Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that a...This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that adding antioxidants helps improve the dispersion among magnetic powders,leading to a 33.3%decrease in jet milling time and a 15.8%increase in magnet powder production yield.Additionally,adding antioxidants enhances the oxidation resistance of the magnetic powders.After being stored in a constant temperature air environment at 25C for 48 h,the O content in the powder decreased by 33%compared to samples without antioxidants.While in the magnet body,the O content decreased from 0.21 wt.%to 0.14 wt.%,which helps increase the effective Sm content and domain wall pinning uniformity in the magnet.Excellent magnetic properties were obtained in the magnet with added antioxidants:B_(r)=11.6 kGs,SF=79.6%,H_(cj)=16.8 kOe,and(BH)_(max)=32.5 MGOe.展开更多
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame...In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials...A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5-2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magnetic field space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.展开更多
Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with...Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with B1〉0.75 T and Hci〉1300 kA/m at 300 ℃ can be obtained. According to the performance data of Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5, the magnetic field along central axis Bz in periodic permanent magnet (PPM) focusing system was simulated using electromagnetic field analysis software Maxwell 2D/3D. The Bz exhibited typical cosine curve along central axis, and the peak value of Bz was high enough to meet the demand of PPM focusing system at room temperature even at 200±20 ℃. Additionally, a kind of simple cooling structure for PPM focusing system was designed by setting cooling pipe between polepieces. Simulated results showed that smooth cosine curve of Bz was successfully achieved with good control of the thickness of cooling pipe.展开更多
This paper analyzes the structure and transmission principles of a modulation permanent magnet gear transmission. Its 3D data model is built based on the known optimized parameters from research team. Its structure of...This paper analyzes the structure and transmission principles of a modulation permanent magnet gear transmission. Its 3D data model is built based on the known optimized parameters from research team. Its structure of the harmonic response is analyzed and discussed under the software ANSYS. The displacement response and the initial 6 order response frequency and phase angle are obtained. The change rule of these responses is known under the forced vibration.展开更多
With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increas...With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.展开更多
This paper proposed a permanent magnet optimization method to suppress the air gap flux density harmonic of permanent magnet synchronous motor(PMSM).The method corrected the effective air gap length of the motor,calcu...This paper proposed a permanent magnet optimization method to suppress the air gap flux density harmonic of permanent magnet synchronous motor(PMSM).The method corrected the effective air gap length of the motor,calculated the magnetization length of the permanent in the case of parallel magnetization,and took the influence of the permanent magnet relative permeability into consideration.Based on these works,for a given sinusoidal air gap flux density waveform,the corresponding structural parameters can be calculated,so as to achieve the optimization of the permanent magnet.By using this method to optimize the shape of the magnet,the fundamental wave of the air gap flux density can be retained to the greatest extent,so as to eliminate harmonics and maintain the output capacity at the same time.The feasibility and accuracy of the method have been verified by finite element analysis(FEA)and prototype machine experiment.This method is simple and time-saving,and has a satisfactory accuracy,which provides a reference method for permanent magnet optimization of PMSM.展开更多
We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable...We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally,we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.展开更多
This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator ...This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator teeth height,and number of poles are analyzed to compare overall torque,power,and torque ripples in order to select the best design parameters and their ranges.Pyleecan,an open-source software,is used to design and optimize the motor for electric vehicle applications.Following optimization with Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ),two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32%and 77%.Additionally,the impact of different magnet grades on the output performances is analyzed.展开更多
The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic f...The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff’s law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.展开更多
With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles e...With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.展开更多
The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in r...The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in rare earth permanent magnet alloys and hydrogen storage alloys were analyzed integrative, on the basis of summary of SC technique development in this paper. The paper mainly includes development history of SC technology, effect of SC technology on alloy microstructure, application of SC technology in RE storage hydrogen alloy and sintered Nd-Fe-B alloy, development of SC equipment and SC product industry. At the same time, the paper points out the existing problem of SC products.展开更多
This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonline...This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.展开更多
Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimati...Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimation based on the extended Kalman filter for PMSM is designed. By predicting the errors of torque and flux based on the model and the current states of the system, the optimal voltage vector is selected to minimize the error of torque and flux. The stator resistance and inductance are estimated online via EKF to reduce the effect of model error and the current estimation can reduce the error caused by measurement noise. The stability of the EKF is proved in theory. The simulation experiment results show the method can estimate the motor parameters, reduce the torque, and flux ripples and improve the performance of direct torque control for permanent magnet synchronous motor (PMSM).展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.
基金the National Key R&D Program of China(Grant No.2021YFB3803003)the Youth Innova-tion Promotion Association of Chinese Academy of Sciences(Grant No.2023311)+1 种基金Zhejiang Public Welfare Technology Application Research Project(Grant No.LGG22E010013)Class III Peak Discipline of Shanghai-Materials Science and Engineering(High-Energy Beam Intelligent Processing and Green Manufacturing).
文摘This study investigated the effect of antioxidants on the grinding efficiency,magnetic powder characteristics,microstructure,and magnetic properties of 2:17 type SmCo permanent magnet materials.The results show that adding antioxidants helps improve the dispersion among magnetic powders,leading to a 33.3%decrease in jet milling time and a 15.8%increase in magnet powder production yield.Additionally,adding antioxidants enhances the oxidation resistance of the magnetic powders.After being stored in a constant temperature air environment at 25C for 48 h,the O content in the powder decreased by 33%compared to samples without antioxidants.While in the magnet body,the O content decreased from 0.21 wt.%to 0.14 wt.%,which helps increase the effective Sm content and domain wall pinning uniformity in the magnet.Excellent magnetic properties were obtained in the magnet with added antioxidants:B_(r)=11.6 kGs,SF=79.6%,H_(cj)=16.8 kOe,and(BH)_(max)=32.5 MGOe.
基金the Natural Science Foundation of China under Grant 52077027in part by the Liaoning Province Science and Technology Major Project No.2020JH1/10100020.
文摘In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金This project was supported financially by the "863"project Ministry of Science and Technology(2002AA324010).
文摘A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5-2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magnetic field space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.
基金the National Basic Research Program (973) (2007CB31407)the International S&T Cooperation Program of China (2006DFA53410)
文摘Rare earth permanent magnets Sm(Co, Fe, Cu, Zr)z with outstanding performance and high-temperature thermal stability were fabricated. Optimized by Fe content and process, Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5 magnet with B1〉0.75 T and Hci〉1300 kA/m at 300 ℃ can be obtained. According to the performance data of Sm(Co0.72Fe0.15Cu0.1Zr0.03)7.5, the magnetic field along central axis Bz in periodic permanent magnet (PPM) focusing system was simulated using electromagnetic field analysis software Maxwell 2D/3D. The Bz exhibited typical cosine curve along central axis, and the peak value of Bz was high enough to meet the demand of PPM focusing system at room temperature even at 200±20 ℃. Additionally, a kind of simple cooling structure for PPM focusing system was designed by setting cooling pipe between polepieces. Simulated results showed that smooth cosine curve of Bz was successfully achieved with good control of the thickness of cooling pipe.
文摘This paper analyzes the structure and transmission principles of a modulation permanent magnet gear transmission. Its 3D data model is built based on the known optimized parameters from research team. Its structure of the harmonic response is analyzed and discussed under the software ANSYS. The displacement response and the initial 6 order response frequency and phase angle are obtained. The change rule of these responses is known under the forced vibration.
基金supported by the Natural Science Foundation of Hubei Province(No.2019 CFB759)。
文摘With the increasing requirement for the mechanical vibration and acoustic noise of the permanent magnet synchronous motor(PMSM)drive system,the demand for cogging torque reduction of PMSM has been considerably increased.To solve the problem of oversized cogging torque of axial flux PMSM,a rotor topology with hybrid permanent magnet is proposed to weaken the cogging torque.Firstly,the expression of the cogging torque of the axial flux motor is derived,and the influence of the pole-arc ratio of the permanent magnet on the cogging torque is analyzed.Secondly,the rotor structure with hybrid permanent magnet is adopted to reduce the cogging torque.According to the analytical analysis,the constraints of the size and pole-arc ratio between the hybrid permanent magnets are obtained,and the two permanent magnets related to the minimum cogging torque are determined.And the analysis results are verified by the finite element simulation.Furthermore,the motor performance with and without the hybrid permanent magnet is compared with each other.Finally,the cogging torque is significantly reduced by adopting a rotor structure with hybrid permanent magnets.
文摘This paper proposed a permanent magnet optimization method to suppress the air gap flux density harmonic of permanent magnet synchronous motor(PMSM).The method corrected the effective air gap length of the motor,calculated the magnetization length of the permanent in the case of parallel magnetization,and took the influence of the permanent magnet relative permeability into consideration.Based on these works,for a given sinusoidal air gap flux density waveform,the corresponding structural parameters can be calculated,so as to achieve the optimization of the permanent magnet.By using this method to optimize the shape of the magnet,the fundamental wave of the air gap flux density can be retained to the greatest extent,so as to eliminate harmonics and maintain the output capacity at the same time.The feasibility and accuracy of the method have been verified by finite element analysis(FEA)and prototype machine experiment.This method is simple and time-saving,and has a satisfactory accuracy,which provides a reference method for permanent magnet optimization of PMSM.
基金Project supported by the National Key Basic Research and Development Program of China(Grant Nos.2012CB821302 and 2016YFA0302103)the National Natural Science Foundation of China(Grant No.11134003)+1 种基金the National High Technology Research and Development Program of China(Grant No.2014AA123401)the Shanghai Excellent Academic Leaders Program of China(Grant No.12XD1402400)
文摘We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally,we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.
基金funded by the Advanced Sustainable Manufacturing Technologies(ASTUTE2020)operation supporting manufacturing companies across Wales,which has been part-funded by the European Regional Development Fund through the Welsh Government and the participating Higher Education Institutions。
文摘This paper explores some design parameters of an interior permanent magnet synchronous motor that contribute to enhancing motor performance.Various geometry parameters such as magnet dimension,machine diameter,stator teeth height,and number of poles are analyzed to compare overall torque,power,and torque ripples in order to select the best design parameters and their ranges.Pyleecan,an open-source software,is used to design and optimize the motor for electric vehicle applications.Following optimization with Non-dominated Sorting Genetic Algorithm(NSGA-Ⅱ),two designs A and B were obtained for two objective functions and the corresponding torque ripples values of the design A and B were later reduced by 32%and 77%.Additionally,the impact of different magnet grades on the output performances is analyzed.
基金supported by National Natural Science Foundation of China (Grant No. 51175083)Jiangsu Provincial University Industry Cooperation Innovation Foundation-Prospective Study of China (Grant No.BY2011135)+1 种基金Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1134)Important Scientific Research Guide Foundation of Southeast University, China
文摘The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff’s law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.
基金Supported by National Natural Science Foundation of China(Grant No.51507096)Shandong Provincial Natural Science Foundation of China(Grant No.ZR2014JL035)
文摘With the improvement of vehicles electrical equipment, the existing silicon rectification generator and permanent magnet generator cannot meet the requirement of the electric power consumption of the modern vehicles electrical equipment. It is di cult to adjust the air gap magnetic field of the permanent magnet generator. Consequently, the output voltage is not stable. The silicon rectifying generator has the problems of low e ciency and high failure rate.In order to solve these problems, a new type of hybrid excitation generator is developed in this paper. The developed hybrid excitation generator has a double-radial permanent magnet, a salient-pole electromagnetic combined rotor,and a fractional slot winding stator, where each rotor pole corresponds to 4.5 stator teeth. The equivalent magnetic circuit diagram of permanent magnet rotor and magnetic rotor is established. Magnetic field finite element analysis(FEA) software is used to conduct the modeling and simulation analysis on double-radial permanent magnet magnetic field, salient-pole electro-magnetic magnetic field and hybrid magnetic field. The magnetic flux density mold value diagram and vector diagram are obtained. The diagrams are used to verify the feasibility of this design. The designed electromagnetic coupling regulator controller can ensure the stable voltage export by changing the magnitude and direction of the excitation current to adjust the size of the air gap magnetic field. Therefore, the problem of output voltage instability in the wide speed range and wide load range of the hybrid excitation generator is solved.
文摘The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in rare earth permanent magnet alloys and hydrogen storage alloys were analyzed integrative, on the basis of summary of SC technique development in this paper. The paper mainly includes development history of SC technology, effect of SC technology on alloy microstructure, application of SC technology in RE storage hydrogen alloy and sintered Nd-Fe-B alloy, development of SC equipment and SC product industry. At the same time, the paper points out the existing problem of SC products.
文摘This paper deals with the investigation of the behavior of a low speed, dual rotor-single coreless stator, axial flux permanent magnet synchronous machine for small power applications. Firstly, with the use of nonlinear 3D FEM electromagnetic analysis, four models with different magnet topologies are designed, simulated and compared. With criteria such as output power, power factor and torque ripple, the best performing model is selected and a further investigation, regarding the effect of the disk rotor material on the behavior of the machine, is conducted. The simulation results show how the different types of commercially available steel types affect the magnetic field and the performance of the machine.
文摘Aiming at the torque and flux ripples in the direct torque control and the time-varying parameters for permanent magnet synchronous motor (PMSM), a model predictive direct torque control with online parameter estimation based on the extended Kalman filter for PMSM is designed. By predicting the errors of torque and flux based on the model and the current states of the system, the optimal voltage vector is selected to minimize the error of torque and flux. The stator resistance and inductance are estimated online via EKF to reduce the effect of model error and the current estimation can reduce the error caused by measurement noise. The stability of the EKF is proved in theory. The simulation experiment results show the method can estimate the motor parameters, reduce the torque, and flux ripples and improve the performance of direct torque control for permanent magnet synchronous motor (PMSM).