The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment ...The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment interaction simulation was carried out,the accuracy of the particle interaction parameters will directly affect the simulation results.This study proposed a method to systematically calibrate the interaction parameters between deep-sea sediment and grouser through the combination of experiment and simulation.The uniaxial compression test and macro adhesion test and corresponding discrete element numerical simulation were carried out,modifying the contact parameters until the simulation results are close to the experimental results.Then the micro-parameters of the JKR adhesion contact model were back calibrated with the test results,and the contact parameters between soil particle-soil particle and soil particle-metal are calibrated.Besides,the adhesion test shows that the adhesion forces were ranked in the order of 5052<STi80<TA2<TC4 under the same surface roughness,which indicates the aluminum alloy 5052 has the best anti-adhesion performance.The relationship between surface adhesion force and microscopic contact parameters was studied by discrete element numerical simulation,and the result shows that the coefficient of static friction and the coefficient of rolling friction has little effect on adhesion force.While it is mainly affected by the coefficient of restitution and surface energy,the surface adhesion force tends to decrease with the increase of the coefficient of restitution and increase with the growth of surface energy.The obtained parameters of soil particle to soil particle and soil particle to metal affecting the adhesion can contribute to the design optimization for the grouser of mining machines to decrease surface adhesion and enhance its movability and mining efficiency.展开更多
Objective:To investigate the relationship between serum adhesion molecules, trace elements and delayed union of tibial and fibula fractures.Methods:A total of 46 patients with delayed union of tibial and fibula fractu...Objective:To investigate the relationship between serum adhesion molecules, trace elements and delayed union of tibial and fibula fractures.Methods:A total of 46 patients with delayed union of tibial and fibula fractures in our hospital from May 2014 to June 2016 were selected as the observation group, 46 patients with normal healing of tibial and fibula fractures were selected as the control group, then the serum adhesion molecules and trace elements levels of two groups at forth, eighth and sixteenth week after the surgery were compared.Results:The serum dhesion molecules levels of observation group at forth, eighth and sixteenth week after the surgery were all higher than those of control group, the serum trace elements levels were all lower than those of control group, and the serum adhesion molecules levels of two groups at eighth week after the surgery were all higher than those at other time, the trace elements levels were all lower than those at other time (allP<0.05).Conclusions:The serum adhesion molecules and trace elements of patients with delayed union of tibial and fibula fractures show obviously abnormal state, so those indexes of those patients should be paid to more monitoring and improvement.展开更多
The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques.Various types of adhesives have different material properties that affect restoration.Therefore,the c...The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques.Various types of adhesives have different material properties that affect restoration.Therefore,the choice of adhesive is particularly important for patients.However,the effect of different kinds of adhesives was not too precise by experimental methods when concerning about individual differences of teeth.One tooth root can only be restored with one type of adhesive in experiment.After the mechanical test,this tooth root cannot be restored with other adhesives.With the help of medical imaging technology,reverse engineering and finite element analysis,a molar model can be reconstructed precisely and restored using different types of adhesives.The same occlusal and chewing loads were exerted on the same restored residual root models with different types of adhesives separately.Results of von Mises stress analysis showed that the adhesives with low Young’s modulus can protect the root canal effectively.However,a root canal concentration is apparently produced around the root canal orifice when chewing.Adhesives with large Young’s modulus can buffer the stress concentration of the root canal orifice.However,the root canal tissue may be destroyed because the adhesive is too hard to buffer the load.展开更多
The adhesion coefficient of automobile tire and road surface was analyzed and the formula about it was derived.Some suggestions about highway construction,driving safety of the drivers and the judgment of the traffic ...The adhesion coefficient of automobile tire and road surface was analyzed and the formula about it was derived.Some suggestions about highway construction,driving safety of the drivers and the judgment of the traffic accidents were presented.The results show that the adhesion coefficient is a function with the extreme value.If there is atmospheric pressure in the tire,the load of the vehicle and the degree of the coarse on the road surface is not selected properly,it will reach the least and affect the safety of the running automobile.展开更多
现有土壤与触土部件材料间的接触参数适用范围较窄,难以模拟高含水率下的作业状况。为了探索多种材料与不同含水率土壤的粘附情况,更加准确地解决触土部件与土壤的粘附问题,以南方稻茬田土壤为研究对象,应用EDEM中的Hertz-Mindlin with ...现有土壤与触土部件材料间的接触参数适用范围较窄,难以模拟高含水率下的作业状况。为了探索多种材料与不同含水率土壤的粘附情况,更加准确地解决触土部件与土壤的粘附问题,以南方稻茬田土壤为研究对象,应用EDEM中的Hertz-Mindlin with JKR Cohesion模型,对不同含水率的土壤与45号钢、超高分子量聚乙烯(ultra-high molecular weight polyethylene, UHMWPE)、聚四氟乙烯(polytetrafluoroethylene,PTFE)的接触参数进行标定。在前期试验的基础上,以碰撞恢复系数、静摩擦系数、滚动摩擦系数和JKR为试验因素,土壤的滚动距离为试验指标设计了Box-Behnken四因素三水平试验。最后对所得回归模型进行优化,得到了含水率21%、26%、31%(±1%)的土壤与45号钢、UHMWPE、PTFE的碰撞恢复系数、静摩擦系数、滚动摩擦系数以及JKR的最优参数。仿真滚动距离与实测滚动距离的最大相对误差为3.46%,说明标定的参数准确可靠,可以为触土部件在进行减粘脱附设计时提供参考。展开更多
随着飞机结冰问题研究的深入,混合相结冰问题已经成为研究热点。本文使用了阻力模型、黏附模型和结冰热力学模型来计算混合相结冰条件下的准三维多端翼的结冰情况。首先对多段翼进行了网格划分和空气流场计算。然后进行了数值模拟计算,...随着飞机结冰问题研究的深入,混合相结冰问题已经成为研究热点。本文使用了阻力模型、黏附模型和结冰热力学模型来计算混合相结冰条件下的准三维多端翼的结冰情况。首先对多段翼进行了网格划分和空气流场计算。然后进行了数值模拟计算,分析了混合相结冰条件下冰晶的撞击、黏附和积冰特征。结果表明,在本研究的条件下,冰晶的黏附质量流量很高,会对飞行安全造成威胁,并且冰晶在溢流水区域也会发生黏附。此外,随着液态水含量(Liquid water content,LWC)与总水含量(Total water content,TWC)比值的升高,冰晶更容易黏附在表面并参与表面结冰。展开更多
目的研究不同孔形态结构的3D打印支架应用于骨再生时对细胞黏附的影响。方法利用MSLattice软件设计四种具有不同孔形态的支架结构,分别是立方形(Cubic)、六边形(Hexagon)、钻石形(Diamond)和螺旋形(Gyroid)。利用有限元分析(Finite elem...目的研究不同孔形态结构的3D打印支架应用于骨再生时对细胞黏附的影响。方法利用MSLattice软件设计四种具有不同孔形态的支架结构,分别是立方形(Cubic)、六边形(Hexagon)、钻石形(Diamond)和螺旋形(Gyroid)。利用有限元分析(Finite element method,FEM)和计算机流体建模(Computational fluid dynamics,CFD)的原理,使用Simenns Star CCM+软件对四种支架内部流体域进行组织液流动模拟,模拟细胞黏附过程,测量支架内组织液流速和压力、组织液的渗透率和黏附层厚度。结果当液体流经四种支架后,压力会被逐渐削弱,但由于支架相对规则,压力均呈现出梯度分布,组织液流经四种支架前的压力值模拟按顺序依次为:Gyroid>Cubic>Diamond>Hexagon。流速:Cubic>Gyroid>Diamond>Hexagon。四种支架的渗透率:Diamond>Hexagon>Cubic>Gyroid。黏附层厚度:Gyroid>Hexagon>Cubic>Diamond。结论流体力学分析结果显示,Gyroid支架具有更低的渗透率和最高的黏附层厚度,更有利于细胞黏附。展开更多
In order to solve the serious problem of soil adhering blade roller in the middle and lower reaches of Yangtze River,the anti-adhesion rototiller based on staggered double-roller scraping(ARSDS)was designed by mechani...In order to solve the serious problem of soil adhering blade roller in the middle and lower reaches of Yangtze River,the anti-adhesion rototiller based on staggered double-roller scraping(ARSDS)was designed by mechanical scraping methods.The volume equation for scraping the soil adhesion part with staggered rotary blades was constructed.The mechanical conditions for separation of soil adhesion part from blade roller were clarified,and the contact time between rotary blade and soil during rotary tillage was analyzed.By this way,the key parameters affecting soil adhering on and separating from the blade roller were determined,which were rotational speed,cutting pitch and tillage depth.The spatial and temporal trajectory changes for the sidelong section edge of staggered rotary blades were analyzed,so that the rotary blade arrangement was obtained.Combining the discrete element method,selecting the soil adhesion mass on the staggered blade rollers as the response value established prediction model by Box-Behnken design test.For example,taking the tillage depth of 14 cm for wheat cultivation in the middle and lower reaches of Yangtze River,the optimal combination of parameters was determined to be 230 r/min and 10 cm for rotational speed and cutting pitch,respectively.At this time,the soil adhesion mass was 4566.67 g.In the meantime,the process of soil particles adhering staggered blade rollers and rotary blades scraping off the adhering soil were clarified.Field experiments have shown that the operation quality of ARSDS met the requirements of rototiller performance indexes.In the rice stubble field of high water moisture,the soil adhesion mass was 13.455 kg and 38.215 kg for ARSDS and conventional rototiller,respectively,which indicated that ARSDS effectively reducing soil adhesion mass.The research results can provide technical support for the design of rototiller reducing soil adhesion in the agricultural areas of the middle and lower reaches of the Yangtze River.展开更多
基金Project(12072309)supported by the National Natural Science Foundation of ChinaProject(19B546)supported by the Education Department Foundation of Hunan Province,ChinaProject(2019RS1059)supported by the Hunan Innovative Province Construction Project,China。
文摘The adhesion between the mining machine and the deep-sea sediments will significantly affect the driving performance of the mining machine in the deep-sea environment.When the mining machine and the deep-sea sediment interaction simulation was carried out,the accuracy of the particle interaction parameters will directly affect the simulation results.This study proposed a method to systematically calibrate the interaction parameters between deep-sea sediment and grouser through the combination of experiment and simulation.The uniaxial compression test and macro adhesion test and corresponding discrete element numerical simulation were carried out,modifying the contact parameters until the simulation results are close to the experimental results.Then the micro-parameters of the JKR adhesion contact model were back calibrated with the test results,and the contact parameters between soil particle-soil particle and soil particle-metal are calibrated.Besides,the adhesion test shows that the adhesion forces were ranked in the order of 5052<STi80<TA2<TC4 under the same surface roughness,which indicates the aluminum alloy 5052 has the best anti-adhesion performance.The relationship between surface adhesion force and microscopic contact parameters was studied by discrete element numerical simulation,and the result shows that the coefficient of static friction and the coefficient of rolling friction has little effect on adhesion force.While it is mainly affected by the coefficient of restitution and surface energy,the surface adhesion force tends to decrease with the increase of the coefficient of restitution and increase with the growth of surface energy.The obtained parameters of soil particle to soil particle and soil particle to metal affecting the adhesion can contribute to the design optimization for the grouser of mining machines to decrease surface adhesion and enhance its movability and mining efficiency.
文摘Objective:To investigate the relationship between serum adhesion molecules, trace elements and delayed union of tibial and fibula fractures.Methods:A total of 46 patients with delayed union of tibial and fibula fractures in our hospital from May 2014 to June 2016 were selected as the observation group, 46 patients with normal healing of tibial and fibula fractures were selected as the control group, then the serum adhesion molecules and trace elements levels of two groups at forth, eighth and sixteenth week after the surgery were compared.Results:The serum dhesion molecules levels of observation group at forth, eighth and sixteenth week after the surgery were all higher than those of control group, the serum trace elements levels were all lower than those of control group, and the serum adhesion molecules levels of two groups at eighth week after the surgery were all higher than those at other time, the trace elements levels were all lower than those at other time (allP<0.05).Conclusions:The serum adhesion molecules and trace elements of patients with delayed union of tibial and fibula fractures show obviously abnormal state, so those indexes of those patients should be paid to more monitoring and improvement.
文摘The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques.Various types of adhesives have different material properties that affect restoration.Therefore,the choice of adhesive is particularly important for patients.However,the effect of different kinds of adhesives was not too precise by experimental methods when concerning about individual differences of teeth.One tooth root can only be restored with one type of adhesive in experiment.After the mechanical test,this tooth root cannot be restored with other adhesives.With the help of medical imaging technology,reverse engineering and finite element analysis,a molar model can be reconstructed precisely and restored using different types of adhesives.The same occlusal and chewing loads were exerted on the same restored residual root models with different types of adhesives separately.Results of von Mises stress analysis showed that the adhesives with low Young’s modulus can protect the root canal effectively.However,a root canal concentration is apparently produced around the root canal orifice when chewing.Adhesives with large Young’s modulus can buffer the stress concentration of the root canal orifice.However,the root canal tissue may be destroyed because the adhesive is too hard to buffer the load.
文摘The adhesion coefficient of automobile tire and road surface was analyzed and the formula about it was derived.Some suggestions about highway construction,driving safety of the drivers and the judgment of the traffic accidents were presented.The results show that the adhesion coefficient is a function with the extreme value.If there is atmospheric pressure in the tire,the load of the vehicle and the degree of the coarse on the road surface is not selected properly,it will reach the least and affect the safety of the running automobile.
基金funded by the Na⁃tional Key R&D Program of China(No.2021YFB2601700)the National Natural Science Foundation of China(No.52272428)+1 种基金the National Science and Technology Major Project of China(No.J2019-Ⅲ-0010-0054)the Fundatmental Research Funds for the Central Universities(No.YWF-23-SDHK-L-003).
文摘随着飞机结冰问题研究的深入,混合相结冰问题已经成为研究热点。本文使用了阻力模型、黏附模型和结冰热力学模型来计算混合相结冰条件下的准三维多端翼的结冰情况。首先对多段翼进行了网格划分和空气流场计算。然后进行了数值模拟计算,分析了混合相结冰条件下冰晶的撞击、黏附和积冰特征。结果表明,在本研究的条件下,冰晶的黏附质量流量很高,会对飞行安全造成威胁,并且冰晶在溢流水区域也会发生黏附。此外,随着液态水含量(Liquid water content,LWC)与总水含量(Total water content,TWC)比值的升高,冰晶更容易黏附在表面并参与表面结冰。
文摘目的研究不同孔形态结构的3D打印支架应用于骨再生时对细胞黏附的影响。方法利用MSLattice软件设计四种具有不同孔形态的支架结构,分别是立方形(Cubic)、六边形(Hexagon)、钻石形(Diamond)和螺旋形(Gyroid)。利用有限元分析(Finite element method,FEM)和计算机流体建模(Computational fluid dynamics,CFD)的原理,使用Simenns Star CCM+软件对四种支架内部流体域进行组织液流动模拟,模拟细胞黏附过程,测量支架内组织液流速和压力、组织液的渗透率和黏附层厚度。结果当液体流经四种支架后,压力会被逐渐削弱,但由于支架相对规则,压力均呈现出梯度分布,组织液流经四种支架前的压力值模拟按顺序依次为:Gyroid>Cubic>Diamond>Hexagon。流速:Cubic>Gyroid>Diamond>Hexagon。四种支架的渗透率:Diamond>Hexagon>Cubic>Gyroid。黏附层厚度:Gyroid>Hexagon>Cubic>Diamond。结论流体力学分析结果显示,Gyroid支架具有更低的渗透率和最高的黏附层厚度,更有利于细胞黏附。
基金supported by the National Natural Science Foundation of China(Grant No.32271994,31901412)Hubei Provincial Natural Science Foundation(Grant No.2024AFB696).
文摘In order to solve the serious problem of soil adhering blade roller in the middle and lower reaches of Yangtze River,the anti-adhesion rototiller based on staggered double-roller scraping(ARSDS)was designed by mechanical scraping methods.The volume equation for scraping the soil adhesion part with staggered rotary blades was constructed.The mechanical conditions for separation of soil adhesion part from blade roller were clarified,and the contact time between rotary blade and soil during rotary tillage was analyzed.By this way,the key parameters affecting soil adhering on and separating from the blade roller were determined,which were rotational speed,cutting pitch and tillage depth.The spatial and temporal trajectory changes for the sidelong section edge of staggered rotary blades were analyzed,so that the rotary blade arrangement was obtained.Combining the discrete element method,selecting the soil adhesion mass on the staggered blade rollers as the response value established prediction model by Box-Behnken design test.For example,taking the tillage depth of 14 cm for wheat cultivation in the middle and lower reaches of Yangtze River,the optimal combination of parameters was determined to be 230 r/min and 10 cm for rotational speed and cutting pitch,respectively.At this time,the soil adhesion mass was 4566.67 g.In the meantime,the process of soil particles adhering staggered blade rollers and rotary blades scraping off the adhering soil were clarified.Field experiments have shown that the operation quality of ARSDS met the requirements of rototiller performance indexes.In the rice stubble field of high water moisture,the soil adhesion mass was 13.455 kg and 38.215 kg for ARSDS and conventional rototiller,respectively,which indicated that ARSDS effectively reducing soil adhesion mass.The research results can provide technical support for the design of rototiller reducing soil adhesion in the agricultural areas of the middle and lower reaches of the Yangtze River.