针对传统的小波域维纳滤波图像降噪效果不理想,并产生伪Gibbs效应的问题,提出了一种小波维纳滤波和Perona-Malik融合去噪的新算法。该算法首先采用模拟偏微分方程的热扩散迭代,在小波域上进行维纳滤波去噪,由此得到的中间结果再通过Pero...针对传统的小波域维纳滤波图像降噪效果不理想,并产生伪Gibbs效应的问题,提出了一种小波维纳滤波和Perona-Malik融合去噪的新算法。该算法首先采用模拟偏微分方程的热扩散迭代,在小波域上进行维纳滤波去噪,由此得到的中间结果再通过Perona-Malik算法进行二次去噪,并在迭代过程中通过噪声权系数η的自适应性,在去噪过程中最大程度地保留图像的有效信息。仿真实验结果及与其他算法的对比分析表明,该算法具有较好的去噪和抑制伪Gibbs效应的能力,有效保存了图像的边缘细节,同时也提高了峰值信噪比(peak signal to noise ratio,PSNR)。展开更多
In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a fin...In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a finite volume method by integrating the equation using a fuzzy measure on the control volume. To make our algorithm move faster in time, we have used an optimized domain decomposition which generalize the wave relaxation method. Several test of noised images illustrate this approach and show the efficiency of the proposed new method.展开更多
牛肉大理石花纹的丰富程度代表着脂肪含量的多少,是牛肉等级划分的重要指标。基于计算机图像的自动分级技术中图像的降噪和分割处理是大理石花纹提取的基础。该文利用多尺度区间插值小波解偏微分方程的方法对牛眼肌切面图像进行处理,基...牛肉大理石花纹的丰富程度代表着脂肪含量的多少,是牛肉等级划分的重要指标。基于计算机图像的自动分级技术中图像的降噪和分割处理是大理石花纹提取的基础。该文利用多尺度区间插值小波解偏微分方程的方法对牛眼肌切面图像进行处理,基于中心相似变换的延拓方法有效解决边界效应。处理中自适应选取配置点,提高计算效率。试验证明,该算法不仅达到降噪目的,同时还实现了对不同对象区域的保边平滑,使图像纹理和边缘更加清晰。降噪结果与传统滤波法进行对比,峰值信噪比值平均比均值滤波高9.0 d B,比中值滤波高8.2 d B,比维纳滤波高6.6 d B,结构相似性数值平均比均值滤波高0.42,比中值滤波高0.40,比维纳滤波高0.34。与大津法相比,去噪后采用灰度进行图像分割的效果更好,既能分割出大脂肪,又能分割出小脂肪,提高了牛肉等级判定的准确度。展开更多
文摘针对传统的小波域维纳滤波图像降噪效果不理想,并产生伪Gibbs效应的问题,提出了一种小波维纳滤波和Perona-Malik融合去噪的新算法。该算法首先采用模拟偏微分方程的热扩散迭代,在小波域上进行维纳滤波去噪,由此得到的中间结果再通过Perona-Malik算法进行二次去噪,并在迭代过程中通过噪声权系数η的自适应性,在去噪过程中最大程度地保留图像的有效信息。仿真实验结果及与其他算法的对比分析表明,该算法具有较好的去噪和抑制伪Gibbs效应的能力,有效保存了图像的边缘细节,同时也提高了峰值信噪比(peak signal to noise ratio,PSNR)。
文摘In this work we present a new method to solve the Perona Malik equation for the image denoising. The method is based on a modified fixed point algorithm which is fast and stable. We discretize the equation using a finite volume method by integrating the equation using a fuzzy measure on the control volume. To make our algorithm move faster in time, we have used an optimized domain decomposition which generalize the wave relaxation method. Several test of noised images illustrate this approach and show the efficiency of the proposed new method.
文摘牛肉大理石花纹的丰富程度代表着脂肪含量的多少,是牛肉等级划分的重要指标。基于计算机图像的自动分级技术中图像的降噪和分割处理是大理石花纹提取的基础。该文利用多尺度区间插值小波解偏微分方程的方法对牛眼肌切面图像进行处理,基于中心相似变换的延拓方法有效解决边界效应。处理中自适应选取配置点,提高计算效率。试验证明,该算法不仅达到降噪目的,同时还实现了对不同对象区域的保边平滑,使图像纹理和边缘更加清晰。降噪结果与传统滤波法进行对比,峰值信噪比值平均比均值滤波高9.0 d B,比中值滤波高8.2 d B,比维纳滤波高6.6 d B,结构相似性数值平均比均值滤波高0.42,比中值滤波高0.40,比维纳滤波高0.34。与大津法相比,去噪后采用灰度进行图像分割的效果更好,既能分割出大脂肪,又能分割出小脂肪,提高了牛肉等级判定的准确度。