期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simultaneous catalytic removal of NOx and diesel soot particulate over perovskite-type oxides and supported Ag catalysts 被引量:4
1
作者 LiuZM HaoZP 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期289-295,共7页
A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalyst... A series of perovskite type oxides and supported Ag catalysts were prepared, and characterized by X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate. An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides, especially with 5% Ag loading. This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot. 展开更多
关键词 perovskite type catalysts supported Ag catalyst NOx diesel soot
下载PDF
La_(1-x)Ca_xMn_(1-y)Al_yO_3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields 被引量:3
2
作者 Lulu Wang Mohammad Al‐Mamun +3 位作者 Porun Liu Yun Wang Hua Gui Yang Huijun Zhao 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第6期1079-1086,共8页
Solar‐driven thermochemical water splitting represents one efficient route to the generation of H2as a clean and renewable fuel.Due to their outstanding catalytic abilities and promising solar fuel production capacit... Solar‐driven thermochemical water splitting represents one efficient route to the generation of H2as a clean and renewable fuel.Due to their outstanding catalytic abilities and promising solar fuel production capacities,perovskite‐type redox catalysts have attracted significant attention in this regard.In the present study,the perovskite series La1‐xCaxMn1‐yAlyO3(x,y=0.2,0.4,0.6,or0.8)was fabricated using a modified Pechini method and comprehensively investigated to determine the applicability of these materials to solar H2production via two‐step thermochemical water splitting.The thermochemical redox behaviors of these perovskites were optimized by doping at either the A(Ca)or B(Al)sites over a broad range of substitution values,from0.2to0.8.Through this doping,a highly efficient perovskite(La0.6Ca0.4Mn0.6Al0.4O3)was developed,which yielded a remarkable H2production rate of429μmol/g during two‐step thermochemical H2O splitting,going between1400and1000°C.Moreover,the performance of the optimized perovskite was found to be eight times higher than that of the benchmark catalyst CeO2under the same experimental conditions.Furthermore,these perovskites also showed impressive catalytic stability during two‐step thermochemical cycling tests.These newly developed La1‐xCaxMn1‐yAlyO3redox catalysts appear to have great potential for future practical applications in thermochemical solar fuel production. 展开更多
关键词 Two‐step thermochemical route Water splitting Solar fuel perovskitetype redox catalyst Hydrogen production
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部