In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and su...In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.展开更多
基金received from the National Natural Science Foundation of China(Nos.21522606,21676246,21476201,21436007,U1462201,and 21376216)supported by Zhejiang Provincial Natural Science Foundation of China(No.LR17B060003)Major Science and Technology Project of Water Pollution Control and Management(No.2017ZX07101)
文摘In this study,a non-enzymatic hydrogen peroxide sensor was successfully fabricated on the basis of copper sulfide nanoparticles/reduced graphene oxide(CuS/RGO) electrocatalyst.Using thiourea as reducing agent and sulfur donor,CuS/RGO hybrid was synthesized through a facile one-pot hydrothermal method,where the reduction of GO and deposition of CuS nanoparticles on RGO occur simultaneously.The results confirmed that the CuS/RGO hybrid helps to prevent the aggregation of CuS nanoparticles.Electrochemical investigation showed that the as-prepared hydrogen peroxide sensor exhibited a low detection limit of 0.18μmol/L(S/N = 3),a good reproducibility(relative standard deviation(RSD) of4.21%),a wide linear range(from 3 to 1215 μmol/L) with a sensitivity of 216.9 μA L/mmol/cm-2 under the optimal conditions.Moreover,the as-prepared sensor also showed excellent selectivity and stability for hydrogen peroxide detection.The excellent performance of CuS/RGO hybrid,especially the lower detection limit than certain enzymes and noble metal nanomaterials ever reported,makes it a promising candidate for non-enzymatic H2O2 sensors.