期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
New Ionic Liquids with Buffering and Chelating Abilities for Enzyme Engineering
1
作者 Guangnan Ou Biyan He 《Advances in Bioscience and Biotechnology》 2019年第10期320-330,共11页
Ionic liquids (ILs) with buffering and chelating abilities were designed and synthesized on the basis of ethylenediaminetetraacetic acid (EDTA) for the development of buffered enzymatic IL systems and for enzymatic re... Ionic liquids (ILs) with buffering and chelating abilities were designed and synthesized on the basis of ethylenediaminetetraacetic acid (EDTA) for the development of buffered enzymatic IL systems and for enzymatic reaction in heavy metal containing aqueous system. Transesterification activity of Candida antarctica lipase B dissolved in the hydroxyl-functionalized IL was buffer dependent. High activity and outstanding stability was obtained with the buffered enzymatic IL systems for the transesterification. In heavy metal containing aqueous system, EDTA IL buffers as Hg2+ chelators protected horseradish peroxidase (HRP) against Hg2+-induced denaturation and precipitation. Higher pH favored the protection, while at lower pH the protection diminished. We can conclude that the new ILs possess both buffering and chelating abilities. 展开更多
关键词 Ionic Liquid EDTA Buffer CHELATOR LIPASE peroxidise Heavy Metal
下载PDF
Catalyzed degradation of disperse dyes by calcium alginate-pectin entrapped bitter gourd (Momordica charantia) peroxidase 被引量:4
2
作者 Rukhsana Satarn Qayyum Husai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第7期1135-1142,共8页
Calcium-alginate pectin entrapped bitter gourd peroxidase (BGP) has been employed for the treatment of disperse dyes: Disperse Brown 1 (DB 1) and Disperse Red 17 (DR 17). Peroxidase alone was unable to decolori... Calcium-alginate pectin entrapped bitter gourd peroxidase (BGP) has been employed for the treatment of disperse dyes: Disperse Brown 1 (DB 1) and Disperse Red 17 (DR 17). Peroxidase alone was unable to decolorize DR 17 and DB 1. However, the investigated dyes were decolorized maximally by BGP in the presence of 0.2 mmol/L redox mediator, violuric acid (VA). A slow decrease in percent decolorization was observed when VA concentration was higher than 0.2 mmol/L which could likely be due to the high reactivity of its aminoxyl radical ( N–O . ) intermediate, that might undergo chemical reactions with aromatic amino acid side chains of the enzyme thereby inactivating it. Maximum decolorization of the dyes was observed at pH 3.0 and 40°C within 2 hr of incubation. Immobilized peroxidase decolorized 98% DR 17 and 71% DB 1 using 35 U of BGP in batch process in 90 min. Immobilized enzyme decolorized 85% DR 17 and 51% DB 1 whereas soluble enzyme decolorized DR 17 to 48% and DB 1 to 30% at 60°C. UV-visible spectral analysis was used to evaluate the degradation of these dyes and their toxicity was tested by Allium cepa test. The generally observed higher stability of the bioaffinity bound enzymes against various forms of inactivation may be related to the specific and strong binding of enzyme with bioaffinity support which prevents the unfolding/denaturation of enzyme. Thus entrapped peroxidase was found to be effective in the decolorization of the investigated dyes. 展开更多
关键词 bitter gourd peroxidise (BGP) ALGINATE PECTIN DECOLORIZATION disperse dyes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部