Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetizatio...Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetization switching.However,it is a challenge that so many multiple modes of magnetization switching are integrated together.Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device.The mode of switching can be easily changed by tuning the amplitude of the applied current.We show that the field-like torque plays an important role in switching process.The field-like torque induces the precession of the magnetization in the case of unipolar switching,however,the field-like torque helps to generate an effective zcomponent torque in the case of bipolar switching.In addition,the influence of key parameters on the mode of switching is discussed,including the field-like torque strength,the bias field,and the current density.Our proposal can be used to design novel reconfigurable logic circuits in the near future.展开更多
The realization of perpendicular magnetization and perpendicular exchange bias(PEB)in magnetic multilayers is important for the spintronic applications.NiO(t)/[Ni(4 nm)/Pt(1 nm)]_(2)multilayers with varying the NiO la...The realization of perpendicular magnetization and perpendicular exchange bias(PEB)in magnetic multilayers is important for the spintronic applications.NiO(t)/[Ni(4 nm)/Pt(1 nm)]_(2)multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO;(001)substrates.Perpendicular magnetization can be achieved when t<25 nm.Perpendicular magnetization originates from strong perpendicular magnetic anisotropy(PMA),mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers.The PMA energy constant decreases monotonically with increasing t,due to the weakening of Ni(001)orientation and a little degradation of the Ni–Pt interface.Furthermore,significant PEB can be observed though NiO layer has spin compensated(001)crystalline plane.The PEB field increases monotonically with increasing t,which is considered to result from the thickness dependent anisotropy of the NiO layer.展开更多
Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magne...Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.展开更多
Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a no...Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.展开更多
We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy(PMA)coefficient,magnetic domain structures,and magnetization dynamics of Pt(5 nm)/[Co(t_(Co))/Ni(t_(Ni))]_(5)/Pt(1 nm)...We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy(PMA)coefficient,magnetic domain structures,and magnetization dynamics of Pt(5 nm)/[Co(t_(Co))/Ni(t_(Ni))]_(5)/Pt(1 nm)multilayers by combining the four standard magnetic characterization techniques.The magnetic-related hysteresis loops obtained from the field-dependent magnetization M and anomalous Hall resistivity(AHR)ρxy showed that the two serial multilayers with t_(Co)=0.2 nm and 0.3 nm have the optimum PMA coefficient K_(U) as well as the highest coercivity H_(C) at the Ni thickness t_(Ni)=0.6 nm.Additionally,the magnetic domain structures obtained by magneto-optic Kerr effect(MOKE)microscopy also significantly depend on the thickness and K_(U) of the films.Furthermore,the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to K_(U) and H_(C),indicating that inhomogeneous magnetic properties dominate the linewidth.However,the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and K_(U).Our results could help promote the PMA[Co/Ni]multilayer applications in various spintronic and spin-orbitronic devices.展开更多
The performance of spin–orbit torque(SOT)in heavy metal/ferromagnetic metal periodic multilayers has attracted widespread attention.In this paper,we have successfully fabricated a series of perpendicular magnetized[P...The performance of spin–orbit torque(SOT)in heavy metal/ferromagnetic metal periodic multilayers has attracted widespread attention.In this paper,we have successfully fabricated a series of perpendicular magnetized[Pt(2-t)/Ni(t)]_4 multilayers,and studied the SOT in the multilayers by varying the thickness of Ni layer t.The current induced magnetization switching was achieved with a critical current density of 1×10^(7)A/cm^(2).The damping-like SOT efficiencyξ_(DL)was extracted from an extended harmonic Hall measurement.We demonstrated that theξ_(DL)can be effectively modulated by t_(Pt)/t_(Ni)ratio of Pt and Ni in the multilayers.The SOT investigation about the[Pt/Ni]N multilayers might provide new material candidates for practical perpendicular SOT-MRAM devices.展开更多
High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/Mg...High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack.Under the assistance of an out-of-plane magnetic field,the magnetization can be fully reversed with a current density of about 10^(4)A/cm^(2).The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque.It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque,and the current-driven magnetization reversal will be more efficient in low-temperature range,while the magnetic field is helpful for the magnetization reversal in high-temperature range.展开更多
In a magnetic nanostripe, the effects of perpendicular magnetic anisotropy(PMA) on the current-driven horizontal motion of vortex wall along the stripe and the vertical motion of the vortex core are studied by micro...In a magnetic nanostripe, the effects of perpendicular magnetic anisotropy(PMA) on the current-driven horizontal motion of vortex wall along the stripe and the vertical motion of the vortex core are studied by micromagnetic simulations.The results show that the horizontal and vertical motion can generally be monotonously enhanced by PMA. However, when the current is small, a nonmonotonic phenomenon for the horizontal motion is found. Namely, the velocity of the horizontal motion firstly decreases and then increases with the increase of the PMA. We find that the reason for this is that the PMA can firstly increase and then decrease the confining force induced by the confining potential energy. In addition, the PMA always enhances the driving force induced by the current.展开更多
We demonstrate that radio frequency(RF)magnetron sputtering technique can modify the perpendicular magnetic anisotropy(PMA)of Pt/Co/normal metal(NM)thin films.Influence of ion irradiation during RF magnetron sputterin...We demonstrate that radio frequency(RF)magnetron sputtering technique can modify the perpendicular magnetic anisotropy(PMA)of Pt/Co/normal metal(NM)thin films.Influence of ion irradiation during RF magnetron sputtering should not be neglected and it can weaken PMA of the deposited magnetic films.The magnitude of this influence can be controlled by tuning RF magnetron sputtering deposition conditions and the upper NM layer thickness.According to the stopping and range of ions in matter(SRIM)simulation results,defects such as displacement atoms and vacancies in the deposited film will increase after the RF magnetron sputtering,which can account for the weakness of PMA.The amplitude changes of the Hall resistance and the threshold current intensity of spin orbit torque(SOT)induced magnetization switching also can be modified.Our study could be useful for controlling magnetic properties of PMA films and designing new type of SOT-based spintronic devices.展开更多
Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. ...Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.展开更多
Microstructures and magnetic properties of Ta/Pt/Co 2 FeAl(CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy(PMA) of half-metallic full-Heusler alloy films.PMA is realized in a 2.5-n...Microstructures and magnetic properties of Ta/Pt/Co 2 FeAl(CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy(PMA) of half-metallic full-Heusler alloy films.PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope.It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA.The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature.At the intersection points,the decreasing slope of the saturation magnetization(M s) changes because of the conversions.The dependence of M s on the annealing temperature and MgO thickness is also studied.展开更多
The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 ...The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.展开更多
In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxA1 thin films with perpendicular magnetic anisotro...In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxA1 thin films with perpendicular magnetic anisotropy. First, we present a brief introduction to the demands for perpendicularly magnetized materials in spintronics, magnetic recording, and perma- nent magnets applications, and the most promising candidates of tetragonal MnxGa and MnxA1 with strong perpendicular magnetic anisotropy. Then, we focus on the recent progress of perpendicularly magnetized MnxGa and MnxA1 respec- tively, including their lattice structures, bulk synthesis, epitaxial growth, structural characterizations, magnetic and other spin-dependent properties, and spintronic devices like magnetic tunneling junctions, spin valves, and spin injectors into semiconductors. Finally, we give a summary and a perspective of these perpendicularly magnetized Mn-based binary alloy films for future applications.展开更多
Compensated ferrimagnetic insulators are particularly interesting for enabling functional spintronic,optical,and microwave devices.Among many different garnets,Gd_(3)Fe_(5)O_(12)(GdIG)is a representative compensated f...Compensated ferrimagnetic insulators are particularly interesting for enabling functional spintronic,optical,and microwave devices.Among many different garnets,Gd_(3)Fe_(5)O_(12)(GdIG)is a representative compensated ferrimagnetic insulator.In this paper,we will study the evolution of the surface morphology,the magnetic properties,and the magnetization compensation through changing the following parameters:the annealing temperature,the growth temperature,the annealing duration,and the choice of different single crystalline garnet substrates.Our objective is to find the optimized growth condition of the GdIG films,for the purpose of achieving a strong perpendicular magnetic anisotropy(PMA)and a flat surface,together with a small effective damping parameter.Through our experiments,we have found that the surface roughness approaching 0.15 nm can be obtained by choosing the growth temperature around 700℃,together with an enhanced PMA.We have also found the modulation of magnetic anisotropy by choosing different single crystalline garnet substrates which change the tensile strain to the compressive strain.A measure of the effective magnetic damping parameter(α_(eff)=0.04±0.01)through a spin pumping experiment in a GdIG/Pt bilayer is also made.Through optimizing the growth dynamics of GdIG films,our results could be useful for synthesizing garnet films with a PMA,which could be beneficial for the future development of ferrimagnetic spintronics.展开更多
Yttrium iron garnet(YIG) films possessing both perpendicular magnetic anisotropy(PMA) and low damping would serve as ideal candidates for high-speed energy-efficient spintronic and magnonic devices.However,it is still...Yttrium iron garnet(YIG) films possessing both perpendicular magnetic anisotropy(PMA) and low damping would serve as ideal candidates for high-speed energy-efficient spintronic and magnonic devices.However,it is still challenging to achieve PMA in YIG films thicker than 20 nm,which is a major bottleneck for their development.In this work,we demonstrate that this problem can be solved by using substrates with moderate lattice mismatch with YIG so as to suppress the excessive strain-induced stress release as increasing the YIG thickness.After carefully optimizing the growth and annealing conditions,we have achieved out-of-plane spontaneous magnetization in YIG films grown on sGGG substrates,even when they are as thick as 50 nm.Furthermore,ferromagnetic resonance and spin pumping induced inverse spin Hall effect measurements further verify the good spin transparency at the surface of our YIG films.展开更多
We investigate the dependence of the switching process on the perpendicular magnetic anisotropy (PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions (P-MTJs) using micromagnetic simulatio...We investigate the dependence of the switching process on the perpendicular magnetic anisotropy (PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions (P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.展开更多
The exchange-coupled [Co/Ni]N/Tb Fe nano-magnetic films can display strong perpendicular magnetic anisotropy(PMA) which depends on the Tb:Fe component ratio, Tb Fe layer thickness and the repetition number N of [Co/Ni...The exchange-coupled [Co/Ni]N/Tb Fe nano-magnetic films can display strong perpendicular magnetic anisotropy(PMA) which depends on the Tb:Fe component ratio, Tb Fe layer thickness and the repetition number N of [Co/Ni]Nmultilayer. Perpendicular spin valves in the nano thickness scale, consisting of a [Co/Ni]3free and a [Co/Ni]5/Tb Fe reference multilayer, show high giant magnetoresistance(GMR) signal of 6.5 % and a large switching field difference over3 k Oe. However, unexpected slanting of the free layer magnetization, accompanied by a reduced GMR ratio, was found to be caused by the presence of a thick Fe-rich or even a thin but Tb-rich Tb Fe layer. We attribute this phenomenon to the large magnetostriction effect of Tb Fe which probably induces strong stress acting on the free layer and hence reduces its interfacial PMA.展开更多
(FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constan...(FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constant Ku of the order of 106 J/m3 were formed. A thick Ag layer is found to be favorable for decreasing the dispersion of the easy axis for magnetization. The measurement of time decay of magnetization gave rise to a small activation volume of the order of 10-25m3, showing the promising of being the recording medium for future high density perpendicular recording.展开更多
Co/Pt multilayers with perpendicular anisotropy were deposited using a dc magnetron sputtering system under high vacuum.Magnetization process was investigated by the measurement of magnetic components parallel and per...Co/Pt multilayers with perpendicular anisotropy were deposited using a dc magnetron sputtering system under high vacuum.Magnetization process was investigated by the measurement of magnetic components parallel and perpendicular to the applied field.A dependence of the coercivity of Co/Pt multilayers on the Co layer thickness was reported,in which the total thickness of Co layers kept constant.It is observed that the coercivity increases with the increment of Co layer thickness.For the samples with the same Co layer thickness while different total Co layer thickness,the coercivity first increases and then decreases with the increase of the total thickness of Co layers.This effect could be attributed to the competition between the reduction of HC related to incoherent reversal and the step-up of HC contributed by the magnetic polarization of Pt atoms at the interface of Co and Pt layers during magnetization reversal.The results show that the change of the coercivity is strongly related to the Co layer thickness,but not the total thickness of Co layers.The dependence of the coercivity on the angle between an applied field and the easy axis shows that the nucleation mode is dominant in magnetization reversal process of the samples.展开更多
Using the nonequilibrium Green's function technique, we investigate the Kondo effect in the quantum dot with perpendicular magnetic fields, in which one is the Zeeman splitting lies in the z-direction and the other i...Using the nonequilibrium Green's function technique, we investigate the Kondo effect in the quantum dot with perpendicular magnetic fields, in which one is the Zeeman splitting lies in the z-direction and the other is the spin flip points at the x-direction. It is found whatever one or two magnetic fields are applied, the local density of states (LDOS) will split into two peaks. The positions of two Kondo resonance peaks are determined by Zeeman energy △ when J = 0, and by √△^2+J^2 when J≠0.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62171013 and 61704005)the National Key Research and Development Program of China(Grant Nos.2021YFB3601303,2021YFB3601304,and 2021YFB3601300)+1 种基金the Beijing Municipal Science and Technology Project,China(Grant No.Z201100004220002)the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-21-BJ-J-1043)。
文摘Spin-orbit torque(SOT)has been considered as one of the promising technologies for the next-generation magnetic random access memory(MRAM).So far,SOT has been widely utilized for inducing various modes of magnetization switching.However,it is a challenge that so many multiple modes of magnetization switching are integrated together.Here we propose a method of implementing both unipolar switching and bipolar switching of the perpendicular magnetization within a single SOT device.The mode of switching can be easily changed by tuning the amplitude of the applied current.We show that the field-like torque plays an important role in switching process.The field-like torque induces the precession of the magnetization in the case of unipolar switching,however,the field-like torque helps to generate an effective zcomponent torque in the case of bipolar switching.In addition,the influence of key parameters on the mode of switching is discussed,including the field-like torque strength,the bias field,and the current density.Our proposal can be used to design novel reconfigurable logic circuits in the near future.
基金supported by the National Natural Science Foundation of China(Grant Nos.51971109,51771053,52001169,and 11874199)the National Key Research and Development Program of China(Grant No.2016YFA0300803)+1 种基金the Fundamental Research Funds for the Central University,China(Grant No.2242020k30039)the open research fund of Key Laboratory of MEMS of Ministry of Education,Southeast University。
文摘The realization of perpendicular magnetization and perpendicular exchange bias(PEB)in magnetic multilayers is important for the spintronic applications.NiO(t)/[Ni(4 nm)/Pt(1 nm)]_(2)multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO;(001)substrates.Perpendicular magnetization can be achieved when t<25 nm.Perpendicular magnetization originates from strong perpendicular magnetic anisotropy(PMA),mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers.The PMA energy constant decreases monotonically with increasing t,due to the weakening of Ni(001)orientation and a little degradation of the Ni–Pt interface.Furthermore,significant PEB can be observed though NiO layer has spin compensated(001)crystalline plane.The PEB field increases monotonically with increasing t,which is considered to result from the thickness dependent anisotropy of the NiO layer.
基金supported by the National Natural Science Foundation of China (Grant No. 51901008)the National Key Research and Development Program of China (Grant No. 2021YFB3201800)。
文摘Thanks to the strong perpendicular magnetic anisotropy(PMA), excellent processing compatibility as well as novel spintronic phenomenon, Co/Pt multilayers have been attracting massive attention and widely used in magnetic storage.However, reversed magnetic domains come into being with the increasing layer repetition ‘N’ to reduce magneto-static energy, resulting in the remarkable diminishment of the remanent magnetization(Mr). As a result, the product of Mrand thickness(i.e., the remanent moment-thickness product, Mrt), a key parameter in magnetic recording for reliable data storing and reading, also decreases dramatically. To overcome this issue, we deposit an ultra-thick granular [Co/Pt]80multilayer with a total thickness of 68 nm on granular SiNxbuffer layer. The Mrt value, Mrto saturation magnetization(Ms) ratio as well as out of plane(OOP) coercivity(Hcoop) are high up to 2.97 memu/cm^(2), 67%, and 1940 Oe(1 Oe = 79.5775 A·m^(-1)),respectively, which is remarkably improved compared with that of continuous [Co/Pt]80multilayers. That is because large amounts of grain boundaries in the granular multilayers can efficiently impede the propagation and expansion of reversed magnetic domains, which is verified by experimental investigations and micromagnetic simulation results. The simulation results also indicate that the value of Mrt, Mr/Msratio, and Hcoopcan be further improved through optimizing the granule size, which can be experimentally realized by manipulating the process parameter of SiNxbuffer layer. This work provides an alternative solution for achieving high Mrt value in ultra-thick Co/Pt multilayers, which is of unneglectable potential in applications of high-density magnetic recording.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403602)the National Natural Science Foundation of China (Grant Nos. 51971109, 52025012, and 52001169)。
文摘Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11774150,12074178,12004171,12074189,and 51971109)the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province,China (Grant No.BK20170627)+2 种基金the National Key Research and Development Program of China (Grant No.2018YFA0209002)the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnologythe Scientific Foundation of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No.NY220164)。
文摘We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy(PMA)coefficient,magnetic domain structures,and magnetization dynamics of Pt(5 nm)/[Co(t_(Co))/Ni(t_(Ni))]_(5)/Pt(1 nm)multilayers by combining the four standard magnetic characterization techniques.The magnetic-related hysteresis loops obtained from the field-dependent magnetization M and anomalous Hall resistivity(AHR)ρxy showed that the two serial multilayers with t_(Co)=0.2 nm and 0.3 nm have the optimum PMA coefficient K_(U) as well as the highest coercivity H_(C) at the Ni thickness t_(Ni)=0.6 nm.Additionally,the magnetic domain structures obtained by magneto-optic Kerr effect(MOKE)microscopy also significantly depend on the thickness and K_(U) of the films.Furthermore,the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to K_(U) and H_(C),indicating that inhomogeneous magnetic properties dominate the linewidth.However,the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and K_(U).Our results could help promote the PMA[Co/Ni]multilayer applications in various spintronic and spin-orbitronic devices.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFB3502400)the National Natural Science Foundation of China(Grant Nos.52061135105,12074025,11834013,and 12274203)+1 种基金the CAS Project for Yong Scientists in Basic Research(Grant No.YSBR-030)the Key Research Project of Frontier Science of Chinese Academy of Sciences(Grant Nos.XDB44000000 and XDB28000000)。
文摘The performance of spin–orbit torque(SOT)in heavy metal/ferromagnetic metal periodic multilayers has attracted widespread attention.In this paper,we have successfully fabricated a series of perpendicular magnetized[Pt(2-t)/Ni(t)]_4 multilayers,and studied the SOT in the multilayers by varying the thickness of Ni layer t.The current induced magnetization switching was achieved with a critical current density of 1×10^(7)A/cm^(2).The damping-like SOT efficiencyξ_(DL)was extracted from an extended harmonic Hall measurement.We demonstrated that theξ_(DL)can be effectively modulated by t_(Pt)/t_(Ni)ratio of Pt and Ni in the multilayers.The SOT investigation about the[Pt/Ni]N multilayers might provide new material candidates for practical perpendicular SOT-MRAM devices.
基金supported by the ISF-NSFC Joint Research Project of International Cooperation and Exchanges(Grant No.51961145305)the National Natural Science Foundation of China(Grant Nos.52171191 and 51771145)+1 种基金the Shaanxi Key Program for International Science and Technology Cooperation Projects(Grant No.2021KWZ-12)the Youth Innovation Team of Shaanxi Universities
文摘High critical current density(>10^(6)A/cm^(2))is one of major obstacles to realize practical applications of the currentdriven magnetization reversal devices.In this work,we successfully prepared Pd/CoZr(3.5 nm)/MgO thin films with large perpendicular magnetic anisotropy and demonstrated a way of reducing the critical current density with a low out-of-plane magnetic field in the Pd/CoZr/MgO stack.Under the assistance of an out-of-plane magnetic field,the magnetization can be fully reversed with a current density of about 10^(4)A/cm^(2).The magnetization reversal is attributed to the combined effect of the out-of-plane magnetic field and the current-induced spin-orbital torque.It is found that the current-driven magnetization reversal is highly relevant to the temperature owing to the varied spin-orbital torque,and the current-driven magnetization reversal will be more efficient in low-temperature range,while the magnetic field is helpful for the magnetization reversal in high-temperature range.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11247026 and 11374253)
文摘In a magnetic nanostripe, the effects of perpendicular magnetic anisotropy(PMA) on the current-driven horizontal motion of vortex wall along the stripe and the vertical motion of the vortex core are studied by micromagnetic simulations.The results show that the horizontal and vertical motion can generally be monotonously enhanced by PMA. However, when the current is small, a nonmonotonic phenomenon for the horizontal motion is found. Namely, the velocity of the horizontal motion firstly decreases and then increases with the increase of the PMA. We find that the reason for this is that the PMA can firstly increase and then decrease the confining force induced by the confining potential energy. In addition, the PMA always enhances the driving force induced by the current.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFB0405700)the National Natural Science Foundation of China(Grant Nos.11474272 and 61774144)+1 种基金Beijing Natural Science Foundation Key Program,China(Grant No.Z190007)the Chinese Academy of Sciences(Grant Nos.QYZDY-SSW-JSC020,XDB44000000,and XDB28000000)。
文摘We demonstrate that radio frequency(RF)magnetron sputtering technique can modify the perpendicular magnetic anisotropy(PMA)of Pt/Co/normal metal(NM)thin films.Influence of ion irradiation during RF magnetron sputtering should not be neglected and it can weaken PMA of the deposited magnetic films.The magnitude of this influence can be controlled by tuning RF magnetron sputtering deposition conditions and the upper NM layer thickness.According to the stopping and range of ions in matter(SRIM)simulation results,defects such as displacement atoms and vacancies in the deposited film will increase after the RF magnetron sputtering,which can account for the weakness of PMA.The amplitude changes of the Hall resistance and the threshold current intensity of spin orbit torque(SOT)induced magnetization switching also can be modified.Our study could be useful for controlling magnetic properties of PMA films and designing new type of SOT-based spintronic devices.
基金supported by the State Key Project of Fundamental Research of Ministry of Science and Technology,China(Grant No.2010CB934400)the National Natural Science Foundation of China(Grant Nos.51229101 and 11374351)
文摘Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50831002,50971025,51071022,and11174031)the National Basic Research Program of China (Grant No. 2012CB932702)+3 种基金the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)the Beijing Nova Program (Grant No. 2011031)the Beijing Municipal Natural Science Foundation,China (Grant No. 2102032)the Fundamental Research Funds for the Central Universities
文摘Microstructures and magnetic properties of Ta/Pt/Co 2 FeAl(CFA)/MgO multilayers are studied to understand perpendicular magnetic anisotropy(PMA) of half-metallic full-Heusler alloy films.PMA is realized in a 2.5-nm CFA film with B2-ordered structure observed by a high resolution transmission electron microscope.It is demonstrated that a high quality interface between the ferromagnetic layer and oxide layer is not essential for PMA.The conversions between in-plane anisotropy and PMA are investigated to study the dependence of magnetic moment on temperature.At the intersection points,the decreasing slope of the saturation magnetization(M s) changes because of the conversions.The dependence of M s on the annealing temperature and MgO thickness is also studied.
基金Supported by the National Basic Research Program of China under Grant No 2011CB921804the Beijing Key Subject Foundation of Condensed Matter Physics under Grant No 0114023
文摘The dependence of perpendicular magnetic anisotropy (PMA) on the barrier layer MgO thickness in MgO/CoFeB /Ta multilayers is investigated. The results show that the strongest PMA occurs in a small window of about 2 4nm with the increase of MgO thickness from 1-1Onto. The crystalline degree of MgO and the change of interatomic distance along the out-of-plane direction may be the main reasons for the change of PMA in these multilayers. Moreover, the roughnesses of 2- and 4-nm-thick MgO samples are 3.163 and 1.8 nm, respectively, and both the samples show PMA. These results could be used to tune the magnetic characteristic of the ultra thin CoFeB film for future applications in perpendicular magnetic devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11127406)
文摘In this article, we review the recent progress in growth, structural characterizations, magnetic properties, and related spintronic devices of tetragonal MnxGa and MnxA1 thin films with perpendicular magnetic anisotropy. First, we present a brief introduction to the demands for perpendicularly magnetized materials in spintronics, magnetic recording, and perma- nent magnets applications, and the most promising candidates of tetragonal MnxGa and MnxA1 with strong perpendicular magnetic anisotropy. Then, we focus on the recent progress of perpendicularly magnetized MnxGa and MnxA1 respec- tively, including their lattice structures, bulk synthesis, epitaxial growth, structural characterizations, magnetic and other spin-dependent properties, and spintronic devices like magnetic tunneling junctions, spin valves, and spin injectors into semiconductors. Finally, we give a summary and a perspective of these perpendicularly magnetized Mn-based binary alloy films for future applications.
基金Project supported by the National Key R&D Program of China(Grant Nos.2017YFA0206200 and 2016YFA0302300)the Basic Science Center Project of the National Natural Science Foundation of China(Grant No.51788104)+2 种基金the National Natural Science Foundation of China(Grant Nos.11774194,11804182,51831005,and 11811082)Beijing Natural Science Foundation(Grant No.Z190009)the Beijing Advanced Innovation Center for Future Chip(ICFC).
文摘Compensated ferrimagnetic insulators are particularly interesting for enabling functional spintronic,optical,and microwave devices.Among many different garnets,Gd_(3)Fe_(5)O_(12)(GdIG)is a representative compensated ferrimagnetic insulator.In this paper,we will study the evolution of the surface morphology,the magnetic properties,and the magnetization compensation through changing the following parameters:the annealing temperature,the growth temperature,the annealing duration,and the choice of different single crystalline garnet substrates.Our objective is to find the optimized growth condition of the GdIG films,for the purpose of achieving a strong perpendicular magnetic anisotropy(PMA)and a flat surface,together with a small effective damping parameter.Through our experiments,we have found that the surface roughness approaching 0.15 nm can be obtained by choosing the growth temperature around 700℃,together with an enhanced PMA.We have also found the modulation of magnetic anisotropy by choosing different single crystalline garnet substrates which change the tensile strain to the compressive strain.A measure of the effective magnetic damping parameter(α_(eff)=0.04±0.01)through a spin pumping experiment in a GdIG/Pt bilayer is also made.Through optimizing the growth dynamics of GdIG films,our results could be useful for synthesizing garnet films with a PMA,which could be beneficial for the future development of ferrimagnetic spintronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072060 and 52021001)the National Key R&D Program of China(Grant No.2021YFB2801600)the China Postdoctoral Science Foundation(Grant No.2021M700679)。
文摘Yttrium iron garnet(YIG) films possessing both perpendicular magnetic anisotropy(PMA) and low damping would serve as ideal candidates for high-speed energy-efficient spintronic and magnonic devices.However,it is still challenging to achieve PMA in YIG films thicker than 20 nm,which is a major bottleneck for their development.In this work,we demonstrate that this problem can be solved by using substrates with moderate lattice mismatch with YIG so as to suppress the excessive strain-induced stress release as increasing the YIG thickness.After carefully optimizing the growth and annealing conditions,we have achieved out-of-plane spontaneous magnetization in YIG films grown on sGGG substrates,even when they are as thick as 50 nm.Furthermore,ferromagnetic resonance and spin pumping induced inverse spin Hall effect measurements further verify the good spin transparency at the surface of our YIG films.
基金Project supported by the National Natural Science Foundation of China(Grant No.61332003)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3024)
文摘We investigate the dependence of the switching process on the perpendicular magnetic anisotropy (PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions (P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.
基金supported by the National Basic Research Program of China (2014CB921104)the National Natural Science Foundation of China (Grant Nos. 51222103, 11274113, 11474067, and 51171047)the support from the Program for New Century Excellent Talents in University (NCET-12-0132)
文摘The exchange-coupled [Co/Ni]N/Tb Fe nano-magnetic films can display strong perpendicular magnetic anisotropy(PMA) which depends on the Tb:Fe component ratio, Tb Fe layer thickness and the repetition number N of [Co/Ni]Nmultilayer. Perpendicular spin valves in the nano thickness scale, consisting of a [Co/Ni]3free and a [Co/Ni]5/Tb Fe reference multilayer, show high giant magnetoresistance(GMR) signal of 6.5 % and a large switching field difference over3 k Oe. However, unexpected slanting of the free layer magnetization, accompanied by a reduced GMR ratio, was found to be caused by the presence of a thick Fe-rich or even a thin but Tb-rich Tb Fe layer. We attribute this phenomenon to the large magnetostriction effect of Tb Fe which probably induces strong stress acting on the free layer and hence reduces its interfacial PMA.
基金The present work has been partially supported by the Japanese Storage Research ConsortiumSupport by Beijing Science and Technology Nova Project(Grant No.H020821290120)is also appreciated.
文摘(FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constant Ku of the order of 106 J/m3 were formed. A thick Ag layer is found to be favorable for decreasing the dispersion of the easy axis for magnetization. The measurement of time decay of magnetization gave rise to a small activation volume of the order of 10-25m3, showing the promising of being the recording medium for future high density perpendicular recording.
基金Projects(10574065,20833002) supported by the National Natural Science Foundation of ChinaProject(2009CB929503) supported by the National Basic Research Program of China
文摘Co/Pt multilayers with perpendicular anisotropy were deposited using a dc magnetron sputtering system under high vacuum.Magnetization process was investigated by the measurement of magnetic components parallel and perpendicular to the applied field.A dependence of the coercivity of Co/Pt multilayers on the Co layer thickness was reported,in which the total thickness of Co layers kept constant.It is observed that the coercivity increases with the increment of Co layer thickness.For the samples with the same Co layer thickness while different total Co layer thickness,the coercivity first increases and then decreases with the increase of the total thickness of Co layers.This effect could be attributed to the competition between the reduction of HC related to incoherent reversal and the step-up of HC contributed by the magnetic polarization of Pt atoms at the interface of Co and Pt layers during magnetization reversal.The results show that the change of the coercivity is strongly related to the Co layer thickness,but not the total thickness of Co layers.The dependence of the coercivity on the angle between an applied field and the easy axis shows that the nucleation mode is dominant in magnetization reversal process of the samples.
基金Supported by the Special Funds of the National Science Foundation of China under Grant No.10847133the National Science Foundation of Education Bureau of Jiangsu Province under Grant No.08KJB140002the Natural Science Foundation of Fujian Province under Grant No.A061004
文摘Using the nonequilibrium Green's function technique, we investigate the Kondo effect in the quantum dot with perpendicular magnetic fields, in which one is the Zeeman splitting lies in the z-direction and the other is the spin flip points at the x-direction. It is found whatever one or two magnetic fields are applied, the local density of states (LDOS) will split into two peaks. The positions of two Kondo resonance peaks are determined by Zeeman energy △ when J = 0, and by √△^2+J^2 when J≠0.