在全球气候变化和高强度人类活动的共同影响下,许多流域天然水循环过程受到破坏。径流序列呈现明显的非平稳特性,给水资源规划、管理、预测和调控带来一定的挑战。揭示径流序列的非平稳特性可以有效应对全球气候变化下的复杂水问题,对...在全球气候变化和高强度人类活动的共同影响下,许多流域天然水循环过程受到破坏。径流序列呈现明显的非平稳特性,给水资源规划、管理、预测和调控带来一定的挑战。揭示径流序列的非平稳特性可以有效应对全球气候变化下的复杂水问题,对降低水文分析难度和提高径流预测精度具有十分重要的意义。研究以汾河上游兰村站为研究对象,分析该站1958-2016年年径流和月径流序列是否平稳。首先从随机水文学角度,采用Mann-Kendall检验法和小波分析法识别径流序列的趋势、突变和周期特征。在此基础上,从统计水文学角度引入Ng-Perron单位根检验方法。通过Mann-Kendall趋势检验和散点图法选择合适的检验方程,对径流序列进行广义最小二乘法(Generalized Least Squares,GLS)退势,并利用修正的信息准则(Modified information criterion,MIC)计算最优时间滞后阶数,判别径流序列是否具有非平稳性。结果显示,径流序列存在趋势、突变和周期成分,为非平稳径流序列。同时Ng-Perron单位根检验表明,该站年、月径流序列在1%显著性水平上具有非平稳特性。相较传统单位根检验方法,Ng-Perron单位根检验采用更为稳健的修正检验统计量,显著调整小样本情况下水平扭曲的现象,具有更好检验水平和功效,因而可以得到更合理的检验结果。研究成果为径流序列非平稳性检验理论的进一步改进及径流预测模型发展与应用提供参考。展开更多
Estimate bounds for the Perron root of a nonnegative matrix are important in theory of nonnegative matrices.It is more practical when the bounds are expressed as an easily calcu-lated function in elements of matrices....Estimate bounds for the Perron root of a nonnegative matrix are important in theory of nonnegative matrices.It is more practical when the bounds are expressed as an easily calcu-lated function in elements of matrices.For the Perron root of nonnegative irreducible matrices,three sequences of lower bounds are presented by means of constructing shifted matrices,whose convergence is studied.The comparisons of the sequences with known ones are supplemented with a numerical example.展开更多
文摘在全球气候变化和高强度人类活动的共同影响下,许多流域天然水循环过程受到破坏。径流序列呈现明显的非平稳特性,给水资源规划、管理、预测和调控带来一定的挑战。揭示径流序列的非平稳特性可以有效应对全球气候变化下的复杂水问题,对降低水文分析难度和提高径流预测精度具有十分重要的意义。研究以汾河上游兰村站为研究对象,分析该站1958-2016年年径流和月径流序列是否平稳。首先从随机水文学角度,采用Mann-Kendall检验法和小波分析法识别径流序列的趋势、突变和周期特征。在此基础上,从统计水文学角度引入Ng-Perron单位根检验方法。通过Mann-Kendall趋势检验和散点图法选择合适的检验方程,对径流序列进行广义最小二乘法(Generalized Least Squares,GLS)退势,并利用修正的信息准则(Modified information criterion,MIC)计算最优时间滞后阶数,判别径流序列是否具有非平稳性。结果显示,径流序列存在趋势、突变和周期成分,为非平稳径流序列。同时Ng-Perron单位根检验表明,该站年、月径流序列在1%显著性水平上具有非平稳特性。相较传统单位根检验方法,Ng-Perron单位根检验采用更为稳健的修正检验统计量,显著调整小样本情况下水平扭曲的现象,具有更好检验水平和功效,因而可以得到更合理的检验结果。研究成果为径流序列非平稳性检验理论的进一步改进及径流预测模型发展与应用提供参考。
基金the National Natural Science Foundation of China (No.10771030)Project for Academic Leader and Group of UESTC (No.L08011001JX0776)
文摘Estimate bounds for the Perron root of a nonnegative matrix are important in theory of nonnegative matrices.It is more practical when the bounds are expressed as an easily calcu-lated function in elements of matrices.For the Perron root of nonnegative irreducible matrices,three sequences of lower bounds are presented by means of constructing shifted matrices,whose convergence is studied.The comparisons of the sequences with known ones are supplemented with a numerical example.