AIM:To address issues in interoperability between different fundus image systems,we proposed a web eyepicture archiving and communication system(PACS)framework in conformance with digital imaging and communication in ...AIM:To address issues in interoperability between different fundus image systems,we proposed a web eyepicture archiving and communication system(PACS)framework in conformance with digital imaging and communication in medicine(DICOM)and health level 7(HL7)protocol to realize fundus images and reports sharing and communication through internet.METHODS:Firstly,a telemedicine-based eye care work flow was established based on integrating the healthcare enterprise(IHE)Eye Care technical framework.Then,a browser/server architecture eye-PACS system was established in conformance with the web access to DICOM persistent object(WADO)protocol,which contains three tiers.RESULTS:In any client system installed with web browser,clinicians could log in the eye-PACS to observe fundus images and reports.Multipurpose internet mail extensions(MIME)type of a structured report is saved as pdf/html with reference link to relevant fundus image using the WADO syntax could provide enough information for clinicians.Some functions provided by open-source Oviyam could be used to query,zoom,move,measure,view OICOM fundus images.CONCLUSION:Such web eye-PACS in compliance to WADO protocol could be used to store and communicate fundus images and reports,therefore is of great significance for teleophthalmology.展开更多
Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projec...Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projects cannot be carried out and many researchers are excluded.Since about 80%of the time in data-intensive projects is wasted according to surveys we need to conclude that we are not fit for the challenges that will come with the billions of smart devices producing continuous streams of data-our methods do not scale.Therefore experts worldwide are looking for strategies and methods that have a potential for the future.The first steps have been made since there is now a wide agreement from the Research Data Alliance to the FAIR principles that data should be associated with persistent identifiers(PID)and metadata(MD).In fact after 20 years of experience we can claim that there are trustworthy PID systems already in broad use.It is argued,however,that assigning PIDs is just the first step.If we agree to assign PIDs and also use the PID to store important relationships such as pointing to locations where the bit sequences or different metadata can be accessed,we are close to defining Digital Objects(DOs)which could indeed indicate a solution to solve some of the basic problems in data management and processing.In addition to standardizing the way we assign PIDs,metadata and other state information we could also define a Digital Object Access Protocol as a universal exchange protocol for DOs stored in repositories using different data models and data organizations.We could also associate a type with each DO and a set of operations allowed working on its content which would facilitate the way to automatic processing which has been identified as the major step for scalability in data science and data industry.A globally connected group of experts is now working on establishing testbeds for a DO-based data infrastructure.展开更多
基金National Natural Science Foundation of China(No.81271668)
文摘AIM:To address issues in interoperability between different fundus image systems,we proposed a web eyepicture archiving and communication system(PACS)framework in conformance with digital imaging and communication in medicine(DICOM)and health level 7(HL7)protocol to realize fundus images and reports sharing and communication through internet.METHODS:Firstly,a telemedicine-based eye care work flow was established based on integrating the healthcare enterprise(IHE)Eye Care technical framework.Then,a browser/server architecture eye-PACS system was established in conformance with the web access to DICOM persistent object(WADO)protocol,which contains three tiers.RESULTS:In any client system installed with web browser,clinicians could log in the eye-PACS to observe fundus images and reports.Multipurpose internet mail extensions(MIME)type of a structured report is saved as pdf/html with reference link to relevant fundus image using the WADO syntax could provide enough information for clinicians.Some functions provided by open-source Oviyam could be used to query,zoom,move,measure,view OICOM fundus images.CONCLUSION:Such web eye-PACS in compliance to WADO protocol could be used to store and communicate fundus images and reports,therefore is of great significance for teleophthalmology.
文摘Data-intensive science is reality in large scientific organizations such as the Max Planck Society,but due to the inefficiency of our data practices when it comes to integrating data from different sources,many projects cannot be carried out and many researchers are excluded.Since about 80%of the time in data-intensive projects is wasted according to surveys we need to conclude that we are not fit for the challenges that will come with the billions of smart devices producing continuous streams of data-our methods do not scale.Therefore experts worldwide are looking for strategies and methods that have a potential for the future.The first steps have been made since there is now a wide agreement from the Research Data Alliance to the FAIR principles that data should be associated with persistent identifiers(PID)and metadata(MD).In fact after 20 years of experience we can claim that there are trustworthy PID systems already in broad use.It is argued,however,that assigning PIDs is just the first step.If we agree to assign PIDs and also use the PID to store important relationships such as pointing to locations where the bit sequences or different metadata can be accessed,we are close to defining Digital Objects(DOs)which could indeed indicate a solution to solve some of the basic problems in data management and processing.In addition to standardizing the way we assign PIDs,metadata and other state information we could also define a Digital Object Access Protocol as a universal exchange protocol for DOs stored in repositories using different data models and data organizations.We could also associate a type with each DO and a set of operations allowed working on its content which would facilitate the way to automatic processing which has been identified as the major step for scalability in data science and data industry.A globally connected group of experts is now working on establishing testbeds for a DO-based data infrastructure.