In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation me...In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.展开更多
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for n...The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for nonlinear bending problem of shallow shells. The results from the present method are in good agreement with those derived from other methods. The present method is of higher accuracy, lower computing time and wider adaptability. In addition, the design of computer program is simple and it is easy to be programmed.展开更多
The EI Nino-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean- atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation usin...The EI Nino-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean- atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of the oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method.展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold pertu...We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.展开更多
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
The unavailability of wasted energy due to the irreversibility in the process is called the entropy generation.An irreversible process is a process in which the entropy of the system is increased.The second law of the...The unavailability of wasted energy due to the irreversibility in the process is called the entropy generation.An irreversible process is a process in which the entropy of the system is increased.The second law of thermodynamics is used to define whether the given system is reversible or irreversible.Here,our focus is how to reduce the entropy of the system and maximize the capability of the system.There are many methods for maximizing the capacity of heat transport.The constant pressure gradient or motion of the wall can be used to increase the heat transfer rate and minimize the entropy.The objective of this study is to analyze the heat and mass transfer of an Eyring-Powell fluid in a porous channel.For this,we choose two different fluid models,namely,the plane and generalized Couette flows.The flow is generated in the channel due to a pressure gradient or with the moving of the upper lid.The present analysis shows the effects of the fluid parameters on the velocity,the temperature,the entropy generation,and the Bejan number.The nonlinear boundary value problem of the flow problem is solved with the help of the regular perturbation method.To validate the perturbation solution,a numerical solution is also obtained with the help of the built-in command NDSolve of MATHEMATICA 11.0.The velocity profile shows the shear thickening behavior via first-order Eyring-Powell parameters.It is also observed that the profile of the Bejan number has a decreasing trend against the Brinkman number.Whenηi→0(i=1,2,3),the Eyring-Powell fluid is transformed into a Newtonian fluid.展开更多
In this paper, using the interpolation perturbation method. the author seeks tosolve several nonlinear problems. Numerical examples show that the method Df thispaper has good accuracy.
Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were de...Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.展开更多
It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obt...It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.展开更多
A 3-D nonlinear problem of supercavitating flow past an axisymmetric body at a small angle of attack is investigated by means of the perturbation method and Fourier-cosine-expansion method. The first three order pertu...A 3-D nonlinear problem of supercavitating flow past an axisymmetric body at a small angle of attack is investigated by means of the perturbation method and Fourier-cosine-expansion method. The first three order perturbation equations are derived in detail and solved numerically using the boundary integral equation method and iterative techniques. Computational results of the hydrodynamic characteristics and cavity shapes of each order are presented for nonaxisymmetric supercavitating flow past cones with various apex-angles at differ- ent cavitation numbers. The numerical results are found in good agreement with experimental data.展开更多
This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order...This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.展开更多
The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear ...The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear fourth-order ordinary differential equation by introducing a time and space similar transformation. A singular perturbation method is used for the large suction Reynolds case to obtain an asymptotic solution by matching outer and inner solutions. For the case of small expansion ratios, we are able to obtain asymptotic solutions by double parameter expansion in either a small Reynolds number or a small asymmetric parameter. The asymptotic solutions indicate that the Reynolds number and expansion ratio play an important role in the flow behavior. Nu- merical methods are also designed to confirm the correctness of the present asymptotic solutions.展开更多
The main goal of this paper is to investigate sound scattering from the sea surface, by Kuo's small perturbation method (SPM), in the Persian Gulf's environmental conditions. Accordingly the SPM method is reviewed...The main goal of this paper is to investigate sound scattering from the sea surface, by Kuo's small perturbation method (SPM), in the Persian Gulf's environmental conditions. Accordingly the SPM method is reviewed, then it is demonstrated how it can accurately model sound scattering from the sea surface. Since in Kuo's approach, the effects of surface roughness and sub-surface bubble plumes on incident sounds can be studied separately, it is possible to investigate the importance of each mechanism in various scattering regimes. To conduct this study, wind and wave information reported by Arzanah station as well as some numerical atmospheric models for the Persian Gulf are presented and applied to examine sound scattering from the sea surface in the Persian Gulf region. Plots of scattering strength by Kuo's SPM method versus grazing angle for various frequencies, wave heights, and wind speeds are presented. The calculated scattering strength by the SPM method for various frequencies and wind speeds are compared against the results of critical sea tests 7 (CST-7). The favorable agreement achieved for sound scattering in the Persian Gulf region is indicative of the fact that the SPM method can quite accurately model and predict sound scattering from the sea surface.展开更多
A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping ...A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.展开更多
The Delta-perturbation expansion method, a kind of new perturbation technique depending upon an artificial parameter Delta was studied. The study reveals that the method exits some advantages, but also exits some limi...The Delta-perturbation expansion method, a kind of new perturbation technique depending upon an artificial parameter Delta was studied. The study reveals that the method exits some advantages, but also exits some limitations. To overcome the limitations, the so-called linearized perturbation method proposed by HE Ji-huan can be powerfully applied.展开更多
The aim of this paper is to obtain the approximate analytical solution of a fractional Zakharov-Kuznetsov equation by using homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo se...The aim of this paper is to obtain the approximate analytical solution of a fractional Zakharov-Kuznetsov equation by using homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo sense. Several examples are given and the results are compared to exact solutions. The results reveal that the method is very effective and simple.展开更多
A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order ...A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order perturbation formulas are obtained hy performing two complex eigensubspace condensations, and the higher order perturbation formulas are derived hy a successive approximation process. Three illustrative examples are given to verify the proposed method and satisfactory results are observed.展开更多
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb...The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.展开更多
基金Supported by National Natural Science Foundation of China(11071198)
文摘In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
文摘The semi? analytic perturbation weighted residuals method was used to solve the nonlinear bending problem of shallow shells, and the fifth order B spline was taken as trial function to seek an efficient method for nonlinear bending problem of shallow shells. The results from the present method are in good agreement with those derived from other methods. The present method is of higher accuracy, lower computing time and wider adaptability. In addition, the design of computer program is simple and it is easy to be programmed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11071205 and 11101349), the “Strate- gic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues” of the Chinese Academy of Sciences, China (Grant No. XDA01020304), the Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2011A135), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011042).
文摘The EI Nino-southern oscillation (ENSO) is an interannual phenomenon involved in tropical Pacific ocean- atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of the oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
基金Project supported by the National Natural Science Foundation of China(Grant No.11647071)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160435)
文摘We present a perturbation study of the ground-state energy of the beryllium atom by incorporating double parameters in the atom's Hamiltonian. The eigenvalue of the Hamiltonian is then solved with a double-fold perturbation scheme,where the spin-spin interaction of electrons from different shells of the atom is also considered. Calculations show that the obtained ground-state energy is in satisfactory agreement with experiment. It is found that the Coulomb repulsion of the inner-shell electrons enhances the effective nuclear charge seen by the outer-shell electrons, and the shielding effect of the outer-shell electrons to the nucleus is also notable compared with that of the inner-shell electrons.
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
基金Project supported by the National Natural Science Foundation of China(Nos.11971142,11871202,61673169,11701176,11626101,and 11601485)。
文摘The unavailability of wasted energy due to the irreversibility in the process is called the entropy generation.An irreversible process is a process in which the entropy of the system is increased.The second law of thermodynamics is used to define whether the given system is reversible or irreversible.Here,our focus is how to reduce the entropy of the system and maximize the capability of the system.There are many methods for maximizing the capacity of heat transport.The constant pressure gradient or motion of the wall can be used to increase the heat transfer rate and minimize the entropy.The objective of this study is to analyze the heat and mass transfer of an Eyring-Powell fluid in a porous channel.For this,we choose two different fluid models,namely,the plane and generalized Couette flows.The flow is generated in the channel due to a pressure gradient or with the moving of the upper lid.The present analysis shows the effects of the fluid parameters on the velocity,the temperature,the entropy generation,and the Bejan number.The nonlinear boundary value problem of the flow problem is solved with the help of the regular perturbation method.To validate the perturbation solution,a numerical solution is also obtained with the help of the built-in command NDSolve of MATHEMATICA 11.0.The velocity profile shows the shear thickening behavior via first-order Eyring-Powell parameters.It is also observed that the profile of the Bejan number has a decreasing trend against the Brinkman number.Whenηi→0(i=1,2,3),the Eyring-Powell fluid is transformed into a Newtonian fluid.
文摘In this paper, using the interpolation perturbation method. the author seeks tosolve several nonlinear problems. Numerical examples show that the method Df thispaper has good accuracy.
文摘Based on the first-order upwind and second-order central type of finite volume (UFV and CFV) scheme, upwind and central type of perturbation finite volume (UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from (0.3) to (0.8) and convergence perform excellent with Reynolds number variation from 10~2 to 10~4.
文摘It is well known that the matrix equations play a significant role in engineering and applicable sciences. In this research article, a new modification of the homotopy perturbation method (HPM) will be proposed to obtain the approximated solution of the matrix equation in the form AX = B. Moreover, the conditions are deduced to check the convergence of the homotopy series. Numerical implementations are adapted to illustrate the properties of the modified method.
基金The project supported by the National Natural Science Foundation of China
文摘A 3-D nonlinear problem of supercavitating flow past an axisymmetric body at a small angle of attack is investigated by means of the perturbation method and Fourier-cosine-expansion method. The first three order perturbation equations are derived in detail and solved numerically using the boundary integral equation method and iterative techniques. Computational results of the hydrodynamic characteristics and cavity shapes of each order are presented for nonaxisymmetric supercavitating flow past cones with various apex-angles at differ- ent cavitation numbers. The numerical results are found in good agreement with experimental data.
基金supported by the National Natural Science Foun-dation of China (11172334)
文摘This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.
基金supported by the Beijing Higher Education Young Elite Teacher Project(No.YETP0387)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-12-108A and FRF-BR13-023)the National Natural Science Foundation of China(Nos.51174028 and 11302024)
文摘The cases of large Reynolds number and small expansion ratio for the asym- metric laminar flow through a two-dimensional porous expanding channel are considered. The Navier-Stokes equations are reduced to a nonlinear fourth-order ordinary differential equation by introducing a time and space similar transformation. A singular perturbation method is used for the large suction Reynolds case to obtain an asymptotic solution by matching outer and inner solutions. For the case of small expansion ratios, we are able to obtain asymptotic solutions by double parameter expansion in either a small Reynolds number or a small asymmetric parameter. The asymptotic solutions indicate that the Reynolds number and expansion ratio play an important role in the flow behavior. Nu- merical methods are also designed to confirm the correctness of the present asymptotic solutions.
文摘The main goal of this paper is to investigate sound scattering from the sea surface, by Kuo's small perturbation method (SPM), in the Persian Gulf's environmental conditions. Accordingly the SPM method is reviewed, then it is demonstrated how it can accurately model sound scattering from the sea surface. Since in Kuo's approach, the effects of surface roughness and sub-surface bubble plumes on incident sounds can be studied separately, it is possible to investigate the importance of each mechanism in various scattering regimes. To conduct this study, wind and wave information reported by Arzanah station as well as some numerical atmospheric models for the Persian Gulf are presented and applied to examine sound scattering from the sea surface in the Persian Gulf region. Plots of scattering strength by Kuo's SPM method versus grazing angle for various frequencies, wave heights, and wind speeds are presented. The calculated scattering strength by the SPM method for various frequencies and wind speeds are compared against the results of critical sea tests 7 (CST-7). The favorable agreement achieved for sound scattering in the Persian Gulf region is indicative of the fact that the SPM method can quite accurately model and predict sound scattering from the sea surface.
文摘A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.
文摘The Delta-perturbation expansion method, a kind of new perturbation technique depending upon an artificial parameter Delta was studied. The study reveals that the method exits some advantages, but also exits some limitations. To overcome the limitations, the so-called linearized perturbation method proposed by HE Ji-huan can be powerfully applied.
文摘The aim of this paper is to obtain the approximate analytical solution of a fractional Zakharov-Kuznetsov equation by using homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo sense. Several examples are given and the results are compared to exact solutions. The results reveal that the method is very effective and simple.
文摘A universal matrix perturbation technique for complex modes is presented. This technique is applicable to all the three cases of complex eigenvalues: distinct, repeated and closely spaced eigenvalues. The lower order perturbation formulas are obtained hy performing two complex eigensubspace condensations, and the higher order perturbation formulas are derived hy a successive approximation process. Three illustrative examples are given to verify the proposed method and satisfactory results are observed.
文摘The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.