The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Tr...The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Troya by means of quasiclassical trajectory (QCT) but also successfully validated Kopin Liu's experimental phenomena about the existence of the reactive resonance. The lifetime of the scattering resonance state was about 0.07 ps. All these were in agreement with the experiments.展开更多
This paper evaluates the interaction potential between a hydrogen and an antihydrogen using the second-order perturbation theory within the framework of the four-body system in a separable two-body basis. It finds tha...This paper evaluates the interaction potential between a hydrogen and an antihydrogen using the second-order perturbation theory within the framework of the four-body system in a separable two-body basis. It finds that the H-H interaction potential possesses the peculiar features of a shallow local minimum located around interatomic separations of r ~ 6a.u. and a barrier rising at τ ≤5a.u.展开更多
Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under th...Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number.The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer(EDL)potential.The EDL potential at the outer side of the bend is larger than that at the inner side of the bend.The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow.Since the spanwise pressure gradient is dominant over the inertial force,the resulting axial velocity profile is skewed into the inner region of the curved channel.Furthermore,the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section.The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows.Remarkably,the curved geometry could be beneficial to improving the electrokinetic energy conversion(EKEC)efficiency.展开更多
基金the support of the Grant from the National Natural Science Foundation of China No.20573064 Ph.D.Special Research Foundation of Chinese Education Department.
文摘The partial potential energy surface was constructed by ab initio method [QCISD(T)/6- 311++G(2df,2pd)]for F+CH4→HF+CH3 reaction system. It not only explained the reaction mechanism brought forward by Diego Troya by means of quasiclassical trajectory (QCT) but also successfully validated Kopin Liu's experimental phenomena about the existence of the reactive resonance. The lifetime of the scattering resonance state was about 0.07 ps. All these were in agreement with the experiments.
基金supported in part by the National Natural Science Foundation of China (Grant No 10575024)in part by the Division of Nuclear Physics, Department of Energy (Grant No DE-AC05-00OR22725) managed by UT-Battelle, LLC
文摘This paper evaluates the interaction potential between a hydrogen and an antihydrogen using the second-order perturbation theory within the framework of the four-body system in a separable two-body basis. It finds that the H-H interaction potential possesses the peculiar features of a shallow local minimum located around interatomic separations of r ~ 6a.u. and a barrier rising at τ ≤5a.u.
基金Project supported by the National Natural Science Foundation of China(Nos.11902165 and 11772162)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2019BS01004)the Inner Mongolia Grassland Talent of China(No.12000-12102408)。
文摘Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number.The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer(EDL)potential.The EDL potential at the outer side of the bend is larger than that at the inner side of the bend.The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow.Since the spanwise pressure gradient is dominant over the inertial force,the resulting axial velocity profile is skewed into the inner region of the curved channel.Furthermore,the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section.The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows.Remarkably,the curved geometry could be beneficial to improving the electrokinetic energy conversion(EKEC)efficiency.