This paper introduces a unified operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups. Let G be a compact group and H be a closed subgroup of G. Let G/H be the left coset ...This paper introduces a unified operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups. Let G be a compact group and H be a closed subgroup of G. Let G/H be the left coset space of H in G and μ be the normalized G-invariant measure on G/H associated to the Weil's formula. Then, we present a generalized abstract framework of Fourier analysis for the Hilbert function space L^2 (G / H, μ).展开更多
文摘This paper introduces a unified operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups. Let G be a compact group and H be a closed subgroup of G. Let G/H be the left coset space of H in G and μ be the normalized G-invariant measure on G/H associated to the Weil's formula. Then, we present a generalized abstract framework of Fourier analysis for the Hilbert function space L^2 (G / H, μ).