In order to increase the efficiency and decrease the cost of machinerydiagnosis, a hybrid system of computational intelligence methods is presented. Firstly, thecontinuous attributes in diagnosis decision system are d...In order to increase the efficiency and decrease the cost of machinerydiagnosis, a hybrid system of computational intelligence methods is presented. Firstly, thecontinuous attributes in diagnosis decision system are discretized with the self-organizing map(SOM) neural network. Then, dynamic reducts are computed based on rough set method, and the keyconditions for diagnosis are found according to the maximum cluster ratio. Lastly, according to theoptimal reduct, the adaptive neuro-fuzzy inference system (ANFIS) is designed for faultidentification. The diagnosis of a diesel verifies the feasibility of engineering applications.展开更多
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input...Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.展开更多
Rough set theory is used to treat the data of vehicle transmission system faults. The minimum fault feature vector can be obtained by calculating the importance and dependency of each attribute. Real time diagnosis, ...Rough set theory is used to treat the data of vehicle transmission system faults. The minimum fault feature vector can be obtained by calculating the importance and dependency of each attribute. Real time diagnosis, as a result, can be actualized. Ultimate decision making can be done by analyzing the consistency of decision information. The result shows that rough set theory is useful and possesses its unique merits in this field.展开更多
By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise...By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis.展开更多
Objective Due to the incompleteness and complexity of fault diagnosis for power transformers,a comprehensive rough-fuzzy scheme for solving fault diagnosis problems is presented.Fuzzy set theory is used both for repre...Objective Due to the incompleteness and complexity of fault diagnosis for power transformers,a comprehensive rough-fuzzy scheme for solving fault diagnosis problems is presented.Fuzzy set theory is used both for representation of incipient faults' indications and producing a fuzzy granulation of the feature space.Rough set theory is used to obtain dependency rules that model indicative regions in the granulated feature space.The fuzzy membership functions corresponding to the indicative regions,modelled by rules,are stored as cases.Results Diagnostic conclusions are made using a similarity measure based on these membership functions.Each case involves only a reduced number of relevant features making this scheme suitable for fault diagnosis.Conclusion Superiority of this method in terms of classification accuracy and case generation is demonstrated.展开更多
In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm bas...In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm based on rough set theory is adopted to extract condition information in monitoring and diagnosis for an engine,so that the technology condition monitoring parameters are optimized. The decision tables for each fault source are built and the diagnosis rules rooting in rough set reduction is applied to carry through intelligent fault diagnosis. The cases studied show that rough set method in condition monitoring and fault diagnosis can lighten the work burden in feature selection and afford advantages for autonomic learning and decision during diagnosis.展开更多
As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safe...As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.展开更多
There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fa...There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.展开更多
In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, ...In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.展开更多
A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from ...A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.展开更多
During the procedure of fault diagnosis for large-scale complicated equipment, the existence of redundant and fuzzy information results in the difficulty of knowledge access. Aiming at this characteristic, this paper ...During the procedure of fault diagnosis for large-scale complicated equipment, the existence of redundant and fuzzy information results in the difficulty of knowledge access. Aiming at this characteristic, this paper brought forth the Rough Set (RS) theory to the field of fault diagnosis. By means of the RS theory which is predominant in the way of dealing with fuzzy and uncertain information, knowledge access about fault diagnosis was realized. The foundation ideology of the RS theory was exhausted in detail, an amended RS algorithm was proposed, and the process model of knowledge access based on the amended RS algorithm was researched. Finally, we verified the correctness and the practicability of this method during the procedure of knowledge access.展开更多
文摘In order to increase the efficiency and decrease the cost of machinerydiagnosis, a hybrid system of computational intelligence methods is presented. Firstly, thecontinuous attributes in diagnosis decision system are discretized with the self-organizing map(SOM) neural network. Then, dynamic reducts are computed based on rough set method, and the keyconditions for diagnosis are found according to the maximum cluster ratio. Lastly, according to theoptimal reduct, the adaptive neuro-fuzzy inference system (ANFIS) is designed for faultidentification. The diagnosis of a diesel verifies the feasibility of engineering applications.
基金the National Natural Science Foundation of China (Grant No. 50128706).
文摘Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.
文摘Rough set theory is used to treat the data of vehicle transmission system faults. The minimum fault feature vector can be obtained by calculating the importance and dependency of each attribute. Real time diagnosis, as a result, can be actualized. Ultimate decision making can be done by analyzing the consistency of decision information. The result shows that rough set theory is useful and possesses its unique merits in this field.
文摘By introducing Rough Set Theory and the principle of Support vector machine,a gear fault diagnosis method based on them is proposed.Firstly,diagnostic decision-making is reduced based on rough set theory,and the noise and redundancy in the sample are removed,then,according to the chosen reduction,a support vector machine multi-classifier is designed for gear fault diagnosis.Therefore,SVM’training data can be reduced and running speed can quicken.Test shows its accuracy and effi- ciency of gear fault diagnosis.
基金This work was supported by the National Natural Science Foundation of China(No.59637200).
文摘Objective Due to the incompleteness and complexity of fault diagnosis for power transformers,a comprehensive rough-fuzzy scheme for solving fault diagnosis problems is presented.Fuzzy set theory is used both for representation of incipient faults' indications and producing a fuzzy granulation of the feature space.Rough set theory is used to obtain dependency rules that model indicative regions in the granulated feature space.The fuzzy membership functions corresponding to the indicative regions,modelled by rules,are stored as cases.Results Diagnostic conclusions are made using a similarity measure based on these membership functions.Each case involves only a reduced number of relevant features making this scheme suitable for fault diagnosis.Conclusion Superiority of this method in terms of classification accuracy and case generation is demonstrated.
文摘In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm based on rough set theory is adopted to extract condition information in monitoring and diagnosis for an engine,so that the technology condition monitoring parameters are optimized. The decision tables for each fault source are built and the diagnosis rules rooting in rough set reduction is applied to carry through intelligent fault diagnosis. The cases studied show that rough set method in condition monitoring and fault diagnosis can lighten the work burden in feature selection and afford advantages for autonomic learning and decision during diagnosis.
基金Project Supported by National Natural Science Foundation of China (50607023), Natural Science Femdation of CQ CSTC (2006BB2189)
文摘As the first step of service restoration of distribution system,rapid fault diagnosis is a significant task for reducing power outage time,decreasing outage loss,and subsequently improving service reliability and safety.This paper analyzes a fault diagnosis approach by using rough set theory in which how to reduce decision table of data set is a main calculation intensive task.Aiming at this reduction problem,a heuristic reduction algorithm based on attribution length and frequency is proposed.At the same time,the corresponding value reduction method is proposed in order to fulfill the reduction and diagnosis rules extraction.Meanwhile,a Euclid matching method is introduced to solve confliction problems among the extracted rules when some information is lacking.Principal of the whole algorithm is clear and diagnostic rules distilled from the reduction are concise.Moreover,it needs less calculation towards specific discernibility matrix,and thus avoids the corresponding NP hard problem.The whole process is realized by MATLAB programming.A simulation example shows that the method has a fast calculation speed,and the extracted rules can reflect the characteristic of fault with a concise form.The rule database,formed by different reduction of decision table,can diagnose single fault and multi-faults efficiently,and give satisfied results even when the existed information is incomplete.The proposed method has good error-tolerate capability and the potential for on-line fault diagnosis.
基金The paper is supported by the 863 Program of China under Grant No 2006AA04A110
文摘There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.
基金Projects 04JK197T supported by Shaanxi Education Bureau Science Foundation and 2005E202 by Shaanxi Science Foundation
文摘In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.
基金Project supported by the National Major Science and Technology Foundation of China during the 10th Five-Year Plan Period(No.2001BA204B05-KHK Z0009)
文摘A novel knowledge-based fuzzy neural network (KBFNN) for fault diagnosis is presented. Crude rules were extracted and the corresponding dependent factors and antecedent coverage factors were calculated firstly from the diagnostic sample based on rough sets theory. Then the number of rules was used to construct partially the structure of a fuzzy neural network and those factors were implemented as initial weights, with fuzzy output parameters being optimized by genetic algorithm. Such fuzzy neural network was called KBFNN. This KBFNN was utilized to identify typical faults of rotating machinery. Diagnostic results show that it has those merits of shorter training time and higher right diagnostic level compared to general fuzzy neural networks.
基金supported by the Shanghai Science and Technology Development Foundation(No.005111070)
文摘During the procedure of fault diagnosis for large-scale complicated equipment, the existence of redundant and fuzzy information results in the difficulty of knowledge access. Aiming at this characteristic, this paper brought forth the Rough Set (RS) theory to the field of fault diagnosis. By means of the RS theory which is predominant in the way of dealing with fuzzy and uncertain information, knowledge access about fault diagnosis was realized. The foundation ideology of the RS theory was exhausted in detail, an amended RS algorithm was proposed, and the process model of knowledge access based on the amended RS algorithm was researched. Finally, we verified the correctness and the practicability of this method during the procedure of knowledge access.