Coloured Petri net(CPN)is a high-level net while place/transition net(PTN)is a low-level net.It is very important to establish the relationship betweenthe two nets both in theoretical analysis and practical applicatio...Coloured Petri net(CPN)is a high-level net while place/transition net(PTN)is a low-level net.It is very important to establish the relationship betweenthe two nets both in theoretical analysis and practical application.In this paper,wegive a formal method of translating a CPN into a behaviourally equivalent PTN.APTN and its behaviour are formally constructed,a PTN equivalence definition is giv-en,and the same properties of the two nets are proved.展开更多
This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condit...This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condition is given and proven for the existence of a feasible priority-based controller based on the notions of liveness and transition invariants. Next, a cyclic behavior graph is constructed, which shows the reachable markings that guarantee the maximum liveness of the system within a given bound vector. Finally, an on-line control strategy is proposed to enforce boundedness and liveness to the given system by appending priority relations to transitions. The dynamic priority relation changes flexibly according to the current state of the system and enforces the system evolving in a bounded and live manner. In addition, numerical examples are studied to verify the validity of the proposed approach that remains the structure of the plant net and is efficient for on-line control.展开更多
Determining the similarity degree between process models was very important for their management,reuse,and analysis.Current approaches either focused on process model's structural aspect,or had inefficiency or imp...Determining the similarity degree between process models was very important for their management,reuse,and analysis.Current approaches either focused on process model's structural aspect,or had inefficiency or imprecision in behavioral similarity.Aiming at these problems,a novel similarity measure which extended an existing method named Transition Adjacent Relation(TAR) with improved precision and efficiency named TAR * was proposed.The ability of measuring similarity was extended by eliminating the duplicate tasks without impacting the behaviors.For precision,TARs was classified into repeatable and unrepeatable ones to identify whether a TAR was involved in a loop.Two new kinds of TARs were added,one related to the invisible tasks after the source place and before sink place,and the other representing implicit dependencies.For efficiency,all TARs based on unfolding instead of its reach ability graph of a labeled Petri net were calculated to avoid state space explosion.Experiments on artificial and real-world process models showed the effectiveness and efficiency of the proposed method.展开更多
Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on ...Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.展开更多
Petri net language is a powerful tool for describing dynamic behaviors of physical systems. However, it is not easy to obtain the language expression for a given Petri net especially a structure-complex net. In this p...Petri net language is a powerful tool for describing dynamic behaviors of physical systems. However, it is not easy to obtain the language expression for a given Petri net especially a structure-complex net. In this paper, we first analyze the behaviors of S-nets, which are structure-simple. With the decomposition method based on a given index function on the place set, a given structure-complex Petri net can be decomposed into a set of structure-simple S-nets. With the language relationships between the original system and the decomposed subnets, an algorithm to obtain the language expression of a given structure-complex net system is presented, which benefits the analysis of physical systems based on the Petri net language.展开更多
In this paper, we have successfully presented a fuzzy Petri net (FPN) model to design the genetic regulatory network. Based on the FPN model, an efficient algorithm is proposed to automatically reason about imprecis...In this paper, we have successfully presented a fuzzy Petri net (FPN) model to design the genetic regulatory network. Based on the FPN model, an efficient algorithm is proposed to automatically reason about imprecise and fuzzy information. By using the reasoning algorithm for the FPN, we present an alternative approach that is more promising than the fuzzy logic. The proposed FPN approach offers more flexible reasoning capability because it is able to obtain results with fuzzy intervals rather than point values. In this paper, a novel model with a new concept of hidden fuzzy transition (HFT) to design the genetic regulatory network is developed. We have built the FPN model and classified the input data in terms of time point and obtained the output data, so the system can be viewed as the two-input and one output system. This method eliminates possible false predictions from the classical fuzzy model thereby allowing a wider search space for inferring regulatory relationship. The experimental results show the proposed approach is feasible and acceptable to design the genetic regulatory network and investigate the dynamical behaviors of gene network.展开更多
It is important to understand the process of cancer cell metastasis and some cancer characteristics that increase disease risk.Because the occurrence of the disease is caused by many factors,and the pathogenesis proce...It is important to understand the process of cancer cell metastasis and some cancer characteristics that increase disease risk.Because the occurrence of the disease is caused by many factors,and the pathogenesis process is also complicated.It is necessary to use interpretable and visual modeling methods to characterize this complex process.Machine learning techniques have demonstrated extraordinary capabilities in identifying models and extracting patterns from data to improve medical prognostic decisions.However,in most cases,it is unexplainable.Using formal methods to model can ensure the correctness and understandability of prediction decisions in a certain extent,and can well visualize the analysis process.Coloured Petri Nets(CPN)is a powerful formal model.This paper presents a modeling approach with CPN and machine learning in breast cancer,which can visualize the process of cancer cell metastasis and the impact of cell characteristics on the risk of disease.By evaluating the performance of several common machine learning algorithms,we finally choose the logistic regression algorithm to analyze the data,and integrate the obtained prediction model into the CPN model.Our method allows us to understand the relations among the cancer cell metastasis and clearly see the quantitative prediction results.展开更多
针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式...针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。展开更多
Reachability-based analysis and temporal analysis are used to verify the properties of concurrent systems, and it is important to exploit fast and efficient methods. This paper gives semantics of temporal formulae wit...Reachability-based analysis and temporal analysis are used to verify the properties of concurrent systems, and it is important to exploit fast and efficient methods. This paper gives semantics of temporal formulae with edges of the transition system of Petri net, and then presents a fast temporal analyzing method, which takes advantage of both Petri net and temporal logic. The method only expands a path of equivalence trace while the path does not satisfy a property according to trace semantics of Petri net, and can validate directly the property on Petri net. Moreover, we exploit a minimal degree of in-out of a node as heuristics to select a path of an equivalence trace. Finally, we demonstrate the validity of the method that decreases state spaces and improves the verification system with the experimental results.展开更多
轨道交通作为电力系统的主要用能对象之一,每年消耗大量电能用于电力机车牵引。因此,降低牵引能耗、提升供能系统的弹性与效能对促进碳达峰、碳中和具有重要的现实意义。轨道交通“网–源–储–车”协同供能系统在传统牵引供电架构的基...轨道交通作为电力系统的主要用能对象之一,每年消耗大量电能用于电力机车牵引。因此,降低牵引能耗、提升供能系统的弹性与效能对促进碳达峰、碳中和具有重要的现实意义。轨道交通“网–源–储–车”协同供能系统在传统牵引供电架构的基础上引入了储能系统与新能源发电系统,然而,如何实现牵引负荷、储能系统及新能源发电系统的高效能源自洽,减少双向波动性与不确定性对能量管理系统的影响成为了新的难题。为实现以上目标,减轻牵引负荷对牵引网的功率冲击,延长储能系统的使用寿命,本文提出了一种基于模糊Petri网(fuzzy Petri nets,FPN)的“网–源–储–车”动态阈值能量管理策略。该策略在“网–源–储–车”基本功率分配框架的基础上,设定了多工况下牵引供电系统与储能系统、新能源发电系统的动态能量交互规则,可适用于不同架构的“网–源–储–车”协同供能体系;在此基础上,以电力机车功率与储能系统寿命作为模糊Petri网的输入参数,经过模糊化、Petri网推理、反模糊化等操作后实现对放电阈值的自适应动态调整。本文以某牵引变电所实测数据作为测试案例,仿真结果表明:相较于基于固定阈值的能量管理策略,基于模糊Petri网的动态阈值管理策略能够有效提升能量回馈效率与再生制动能量储存效率,同时,增加光伏发电系统的利用电度,降低电力机车经由接触网从电力系统取能的平均功率及储能系统的平均放电深度;对延长储能系统的预计寿命、提升协同供能系统的能量利用效率与运行经济性具有积极意义。展开更多
The reachability problem of synchronizing transitions bounded Petri net systems (BPNSs) is investigated in this paper by constructing a mathematical model for dynamics of BPNS. Using the semi-tensor product (STP) ...The reachability problem of synchronizing transitions bounded Petri net systems (BPNSs) is investigated in this paper by constructing a mathematical model for dynamics of BPNS. Using the semi-tensor product (STP) of matrices, the dynamics of BPNSs, which can be viewed as a combination of several small bounded subnets via synchronizing transitions, are described by an algebraic equation. When the algebraic form for its dynamics is established, we can present a necessary and sufficient condition for the reachability between any marking (or state) and initial marking. Also, we give a corresponding algorithm to calculate all of the transition paths between initial marking and any target marking. Finally, an example is shown to illustrate proposed results. The key advantage of our approach, in which the set of reachable markings of BPNSs can be expressed by the set of reachable markings of subnets such that the big reachability set of BPNSs do not need generate, is partly avoid the state explosion problem of Petri nets (PNs).展开更多
文摘Coloured Petri net(CPN)is a high-level net while place/transition net(PTN)is a low-level net.It is very important to establish the relationship betweenthe two nets both in theoretical analysis and practical application.In this paper,wegive a formal method of translating a CPN into a behaviourally equivalent PTN.APTN and its behaviour are formally constructed,a PTN equivalence definition is giv-en,and the same properties of the two nets are proved.
基金the Project of Industrial Internet and Integration of Industrialization and Industrialization of Guangxi,China under Grant No.Guigong2021-37.
文摘This paper deals with the supervisory control problem of discrete event systems modeled by labeled Petri nets. The system is originally unbounded. First, the solvability of the problem is confirmed. A necessary condition is given and proven for the existence of a feasible priority-based controller based on the notions of liveness and transition invariants. Next, a cyclic behavior graph is constructed, which shows the reachable markings that guarantee the maximum liveness of the system within a given bound vector. Finally, an on-line control strategy is proposed to enforce boundedness and liveness to the given system by appending priority relations to transitions. The dynamic priority relation changes flexibly according to the current state of the system and enforces the system evolving in a bounded and live manner. In addition, numerical examples are studied to verify the validity of the proposed approach that remains the structure of the plant net and is efficient for on-line control.
基金Project supported by the National Science Foundation,China(No.61003099)the National Basic Research Program,China(No.2009CB320700)
文摘Determining the similarity degree between process models was very important for their management,reuse,and analysis.Current approaches either focused on process model's structural aspect,or had inefficiency or imprecision in behavioral similarity.Aiming at these problems,a novel similarity measure which extended an existing method named Transition Adjacent Relation(TAR) with improved precision and efficiency named TAR * was proposed.The ability of measuring similarity was extended by eliminating the duplicate tasks without impacting the behaviors.For precision,TARs was classified into repeatable and unrepeatable ones to identify whether a TAR was involved in a loop.Two new kinds of TARs were added,one related to the invisible tasks after the source place and before sink place,and the other representing implicit dependencies.For efficiency,all TARs based on unfolding instead of its reach ability graph of a labeled Petri net were calculated to avoid state space explosion.Experiments on artificial and real-world process models showed the effectiveness and efficiency of the proposed method.
文摘Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.
基金This work was supported by the National Natural Science Foundation of China(No.60173053&No.60274063)the Excellent Young Scientist Foundation of Shandong Province of China(No.02BS069).
文摘Petri net language is a powerful tool for describing dynamic behaviors of physical systems. However, it is not easy to obtain the language expression for a given Petri net especially a structure-complex net. In this paper, we first analyze the behaviors of S-nets, which are structure-simple. With the decomposition method based on a given index function on the place set, a given structure-complex Petri net can be decomposed into a set of structure-simple S-nets. With the language relationships between the original system and the decomposed subnets, an algorithm to obtain the language expression of a given structure-complex net system is presented, which benefits the analysis of physical systems based on the Petri net language.
基金supported by Department of Computer Science Project of University of Jamia Millia Islamia, India (No. 39151-A)
文摘In this paper, we have successfully presented a fuzzy Petri net (FPN) model to design the genetic regulatory network. Based on the FPN model, an efficient algorithm is proposed to automatically reason about imprecise and fuzzy information. By using the reasoning algorithm for the FPN, we present an alternative approach that is more promising than the fuzzy logic. The proposed FPN approach offers more flexible reasoning capability because it is able to obtain results with fuzzy intervals rather than point values. In this paper, a novel model with a new concept of hidden fuzzy transition (HFT) to design the genetic regulatory network is developed. We have built the FPN model and classified the input data in terms of time point and obtained the output data, so the system can be viewed as the two-input and one output system. This method eliminates possible false predictions from the classical fuzzy model thereby allowing a wider search space for inferring regulatory relationship. The experimental results show the proposed approach is feasible and acceptable to design the genetic regulatory network and investigate the dynamical behaviors of gene network.
基金This work was supported in part by the Natural Science Foundation of Shaanxi Province(No.2021JM-205)the Fundamental Research Funds for the Central Universities.
文摘It is important to understand the process of cancer cell metastasis and some cancer characteristics that increase disease risk.Because the occurrence of the disease is caused by many factors,and the pathogenesis process is also complicated.It is necessary to use interpretable and visual modeling methods to characterize this complex process.Machine learning techniques have demonstrated extraordinary capabilities in identifying models and extracting patterns from data to improve medical prognostic decisions.However,in most cases,it is unexplainable.Using formal methods to model can ensure the correctness and understandability of prediction decisions in a certain extent,and can well visualize the analysis process.Coloured Petri Nets(CPN)is a powerful formal model.This paper presents a modeling approach with CPN and machine learning in breast cancer,which can visualize the process of cancer cell metastasis and the impact of cell characteristics on the risk of disease.By evaluating the performance of several common machine learning algorithms,we finally choose the logistic regression algorithm to analyze the data,and integrate the obtained prediction model into the CPN model.Our method allows us to understand the relations among the cancer cell metastasis and clearly see the quantitative prediction results.
文摘针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。
文摘Reachability-based analysis and temporal analysis are used to verify the properties of concurrent systems, and it is important to exploit fast and efficient methods. This paper gives semantics of temporal formulae with edges of the transition system of Petri net, and then presents a fast temporal analyzing method, which takes advantage of both Petri net and temporal logic. The method only expands a path of equivalence trace while the path does not satisfy a property according to trace semantics of Petri net, and can validate directly the property on Petri net. Moreover, we exploit a minimal degree of in-out of a node as heuristics to select a path of an equivalence trace. Finally, we demonstrate the validity of the method that decreases state spaces and improves the verification system with the experimental results.
文摘轨道交通作为电力系统的主要用能对象之一,每年消耗大量电能用于电力机车牵引。因此,降低牵引能耗、提升供能系统的弹性与效能对促进碳达峰、碳中和具有重要的现实意义。轨道交通“网–源–储–车”协同供能系统在传统牵引供电架构的基础上引入了储能系统与新能源发电系统,然而,如何实现牵引负荷、储能系统及新能源发电系统的高效能源自洽,减少双向波动性与不确定性对能量管理系统的影响成为了新的难题。为实现以上目标,减轻牵引负荷对牵引网的功率冲击,延长储能系统的使用寿命,本文提出了一种基于模糊Petri网(fuzzy Petri nets,FPN)的“网–源–储–车”动态阈值能量管理策略。该策略在“网–源–储–车”基本功率分配框架的基础上,设定了多工况下牵引供电系统与储能系统、新能源发电系统的动态能量交互规则,可适用于不同架构的“网–源–储–车”协同供能体系;在此基础上,以电力机车功率与储能系统寿命作为模糊Petri网的输入参数,经过模糊化、Petri网推理、反模糊化等操作后实现对放电阈值的自适应动态调整。本文以某牵引变电所实测数据作为测试案例,仿真结果表明:相较于基于固定阈值的能量管理策略,基于模糊Petri网的动态阈值管理策略能够有效提升能量回馈效率与再生制动能量储存效率,同时,增加光伏发电系统的利用电度,降低电力机车经由接触网从电力系统取能的平均功率及储能系统的平均放电深度;对延长储能系统的预计寿命、提升协同供能系统的能量利用效率与运行经济性具有积极意义。
基金supported by the National Natural Science Foundation of China(61573199,61573200)the Tianjin Natural Science Foundation(14JCYBJC18700)
文摘The reachability problem of synchronizing transitions bounded Petri net systems (BPNSs) is investigated in this paper by constructing a mathematical model for dynamics of BPNS. Using the semi-tensor product (STP) of matrices, the dynamics of BPNSs, which can be viewed as a combination of several small bounded subnets via synchronizing transitions, are described by an algebraic equation. When the algebraic form for its dynamics is established, we can present a necessary and sufficient condition for the reachability between any marking (or state) and initial marking. Also, we give a corresponding algorithm to calculate all of the transition paths between initial marking and any target marking. Finally, an example is shown to illustrate proposed results. The key advantage of our approach, in which the set of reachable markings of BPNSs can be expressed by the set of reachable markings of subnets such that the big reachability set of BPNSs do not need generate, is partly avoid the state explosion problem of Petri nets (PNs).