The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogena...The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogenation still remains a challenge.Herein,a La promoted Ni-based catalyst is reported through the thermal reduction of quaternary Ni La Mg Al-layered double hydroxides(Ni La Mg Al-LDHs).The incorporation of La is beneficial to the reduction and stability of Ni particles with reduced particle size,and the increased alkalinity effectively mitigates the breakage of molecular chains of PR.As a result,the La promoted Ni-based catalyst exhibits high catalytic activity and excellent stability for PR hydrogenation.A hydrogenation degree of 95.4%and 96.1%can be achieved for HC_(5)PR and HC_(9) PR with less reduced softening point,respectively.Notably,the hydrogenation degree still maintains at 92.7%even after 100 hours’reaction,much better than that without La incorporation or prepared using conventional impregnation method.展开更多
The geometries of resins with single-layer (SG), double-layer (DG) and triple-layer (TG) were calculated with the quantum chemistry method. The geometries and net charges of atoms were obtained. The calculated a...The geometries of resins with single-layer (SG), double-layer (DG) and triple-layer (TG) were calculated with the quantum chemistry method. The geometries and net charges of atoms were obtained. The calculated average distances between layers were 0.5348 nm and 0.5051 nm and the action energies were -9.6355 kJ/mol and -32.2803 kJ/mol for resins DG and TG, respectively. Higher electronegative polar atoms can easily form hydrogen bonds with hydrogen atoms of other resin molecules, resulting in resin aggregates. The minimum cross-sectional diameters of resin molecules are too large to enter the pores of zeolite, so they are likely to crack on the surface of zeolite.展开更多
The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor ...The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor on the properties of the emulsion were discussed.The results showed that the optimum process conditions covered:a maleic anhydride mass fraction of 1.5%,a maleic rosin mass fraction of 10%,a KOH mass fraction of 1%,a petroleum resin modification temperature of 200℃,a petroleum resin modification duration of 3 h,and a modified petroleum resin emulsion/wax emulsion mixing ratio of 1:1.The particle size of modified petroleum resin emulsion prepared under these conditions was equal to 104.166μm.展开更多
Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 ca...Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 catalyst and PdRu/ y-A1203 catalyst connected in series. Via the hydrogenation reaction, aromatic rings in C9PR were converted to alicyclic rings, and its color was reduced from Gardner color grade No. 11 to Gardner color grade No. 0. The optimum Ni/W atomic ratio was found to be close to 0.23, while the optimum Pd/Ru atomic ratio was close to 3.80. The TEM results showed that the morphology and size of sulfide or metal particles of the two kinds of catalysts remained almost unchanged after the reac- tion was carried our for 1 204 hours, attesting to their good catalytic stability.展开更多
Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reductio...Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.展开更多
基金financially supported by the National Natural Science Foundation of China(22078064)Natural Science Foundation of Fujian Province for Distinguished Young Scholar(2018J06002)。
文摘The hydrogenation of petroleum resin(PR)is an effective process to prepare high value-added hydrogenated PR(HPR).However,the preparation of non-noble metal-based catalysts with high catalytic activity for PR hydrogenation still remains a challenge.Herein,a La promoted Ni-based catalyst is reported through the thermal reduction of quaternary Ni La Mg Al-layered double hydroxides(Ni La Mg Al-LDHs).The incorporation of La is beneficial to the reduction and stability of Ni particles with reduced particle size,and the increased alkalinity effectively mitigates the breakage of molecular chains of PR.As a result,the La promoted Ni-based catalyst exhibits high catalytic activity and excellent stability for PR hydrogenation.A hydrogenation degree of 95.4%and 96.1%can be achieved for HC_(5)PR and HC_(9) PR with less reduced softening point,respectively.Notably,the hydrogenation degree still maintains at 92.7%even after 100 hours’reaction,much better than that without La incorporation or prepared using conventional impregnation method.
文摘The geometries of resins with single-layer (SG), double-layer (DG) and triple-layer (TG) were calculated with the quantum chemistry method. The geometries and net charges of atoms were obtained. The calculated average distances between layers were 0.5348 nm and 0.5051 nm and the action energies were -9.6355 kJ/mol and -32.2803 kJ/mol for resins DG and TG, respectively. Higher electronegative polar atoms can easily form hydrogen bonds with hydrogen atoms of other resin molecules, resulting in resin aggregates. The minimum cross-sectional diameters of resin molecules are too large to enter the pores of zeolite, so they are likely to crack on the surface of zeolite.
文摘The modified petroleum resin emulsion prepared from the C9petroleum resin was modified with maleic anhydride.The effects of maleic rosin and maleic anhydride addition level,the modification time and the alkali liquor on the properties of the emulsion were discussed.The results showed that the optimum process conditions covered:a maleic anhydride mass fraction of 1.5%,a maleic rosin mass fraction of 10%,a KOH mass fraction of 1%,a petroleum resin modification temperature of 200℃,a petroleum resin modification duration of 3 h,and a modified petroleum resin emulsion/wax emulsion mixing ratio of 1:1.The particle size of modified petroleum resin emulsion prepared under these conditions was equal to 104.166μm.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201018517)
文摘Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 catalyst and PdRu/ y-A1203 catalyst connected in series. Via the hydrogenation reaction, aromatic rings in C9PR were converted to alicyclic rings, and its color was reduced from Gardner color grade No. 11 to Gardner color grade No. 0. The optimum Ni/W atomic ratio was found to be close to 0.23, while the optimum Pd/Ru atomic ratio was close to 3.80. The TEM results showed that the morphology and size of sulfide or metal particles of the two kinds of catalysts remained almost unchanged after the reac- tion was carried our for 1 204 hours, attesting to their good catalytic stability.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201225114)the Natural Science Foundation of Zhejiang Province (LY13B030006)
文摘Catalytic hydrogenation is an appropriate method for the improvement of C9 petroleum resin(C9PR) quality. In this study, the Ni2P/SiO2(containing 10% of Ni) catalyst prepared by the temperature-programmed reduction(TPR) method was used for hydrogenation of C9 petroleum resins. The effect of reaction conditions on catalytic performance was studied, and the results showed that the optimum reaction temperature, pressure and liquid hourly space velocity(LHSV) was 250 ℃, 6.0 MPa, and 1.0 h-1, respectively. The bromine numbers of hydrogenated products were maintained at low values(250 mg Br/100g) within 300h, showing the high activity and stability of Ni2P/SiO2 catalyst. The fresh and spent catalysts were characterized by X-ray diffraction(XRD), BET surface area(BET) analysis, scanning electron microscopy(SEM), transmission electron microscopy(TEM), Fourier transform infrared(FTIR) pyridine adsorption, and X-ray photoelectron spectroscopy(XPS). Compared with the traditional sulfurated-Ni W catalysts, Ni2P possessed globe-like structure instead of layered structure like the active phase of Ni WS, thereof exposing more active sites, which were responsible for the high activity of Ni2P/SiO2 catalyst. The stability of Ni2P/SiO2 catalyst was probably attributed to its high sulfur tolerance, antisintering, anti-coking and carbon-resistance ability. These properties might be further ascribed to the special Ni-P-S surface phase, high thermal stability of Ni2P nanoparticles and weak surface acidity for the Ni2P/SiO2 catalyst.