This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation ...This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation models and mechanisms of the whole petroleum system.It delineates the geological model,flow model,and production mechanism of shale and tight reservoirs,and proposes future research orientations.The main structure of the whole petroleum system includes three fluid dynamic fields,three types of oil and gas reservoirs/resources,and two types of reservoir-forming processes.Conventional oil/gas,tight oil/gas,and shale oil/gas are orderly in generation time and spatial distribution,and sequentially rational in genetic mechanism,showing the pattern of sequential accumulation.The whole petroleum system involves two categories of hydrocarbon accumulation models:hydrocarbon accumulation in the detrital basin and hydrocarbon accumulation in the carbonate basin/formation.The accumulation of unconventional oil/gas is self-containment,which is microscopically driven by the intermolecular force(van der Waals force).The unconventional oil/gas production has proved that the geological model,flow model,and production mechanism of shale and tight reservoirs represent a new and complex field that needs further study.Shale oil/gas must be the most important resource replacement for oil and gas resources of China.Future research efforts include:(1)the characteristics of the whole petroleum system in carbonate basins and the source-reservoir coupling patterns in the evolution of composite basins;(2)flow mechanisms in migration,accumulation,and production of shale oil/gas and tight oil/gas;(3)geological characteristics and enrichment of deep and ultra-deep shale oil/gas,tight oil/gas and coalbed methane;(4)resource evaluation and new generation of basin simulation technology of the whole petroleum system;(5)research on earth system-earth organic rock and fossil fuel system-whole petroleum system.展开更多
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo...Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.展开更多
Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the ...Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.展开更多
The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in...The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.展开更多
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some...The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside.展开更多
Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is d...Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is determined. Then, taking the Carboniferous Benxi Formation and the Permian Taiyuan Formation and Shanxi Formation as examples, the main controlling factors of gas accumulation and enrichment are discussed, and the gas enrichment models of total petroleum system are established. The results show that the source rocks, faults and tight reservoirs and their mutual coupling relations control the distribution and enrichment of gas. Specifically, the distribution and hydrocarbon generation capacity of source rocks control the enrichment degree and distribution range of retained shale gas and tight gas in the source. The coupling between the hydrocarbon generation capacity of source rocks and the physical properties of tight reservoirs controls the distribution and sweet spot development of near-source tight gas in the basin center. The far-source tight gas in the basin margin is mainly controlled by the distribution of faults, and the distribution of inner-source, near-source and far-source gas is adjusted and reformed by faults. Generally, the Upper Paleozoic gas in the Ordos Basin is recognized in four enrichment models: inner-source coalbed gas and shale gas, inner-source tight sandstone gas, near-source tight gas, and far-source fault-transported gas. In the Ordos Basin, inner-source tight gas and near-source tight gas are the current focuses of exploration, and inner-source coalbed gas and shale gas and far-source gas will be important potential targets in the future.展开更多
Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas t...Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas types and distribution characteristics,reservoir-forming dynamics,source-reservoir relationship and hydrocarbon accumulation model of the whole petroleum system in shallow and medium strata in the northern part of Songliao Basin are systematically studied.The shallow-medium strata in northern Songliao Basin have the conditions for the formation of whole petroleum system,with sufficient oil and gas sources,diverse reservoir types and well-developed transport system,forming a whole petroleum system centered on the source rocks of the Cretaceous Qingshankou Formation.Different types of oil and gas resources in the whole petroleum system are correlated with each other in terms of depositional system,lithologic association and physical property changes,and they,to a certain extent,have created the spatial framework with orderly symbiosis of shallow-medium conventional oil reservoirs,tight oil reservoirs and shale oil reservoirs in northern Songliao Basin.Vertically,the resources are endowed as conventional oil above source,shale oil/tight oil within source,and tight oil below source.Horizontally,conventional oil,tight oil,interlayer-type shale oil,and pure shale-type shale oil are developed in an orderly way,from the margin of the basin to the center of the depression.Three hydrocarbon accumulation models are recognized for the whole petroleum system in northern Songliao Basin,namely,buoyancy-driven charging of conventional oil above source,retention of shale oil within source,and pressure differential-driven charging of tight oil below source.展开更多
Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differen...Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differences in geochemical features. According to the characteristics and differences in oil and gas phase, the petroleum system can be divided into five categories: oil reservoir, wet gas reservoir, condensate gas-rich reservoir, condensate gas-poor reservoir and dry gas reservoir. The causes for the diversities in oil and gas phases include diversities of the sources of parent material, maturity of natural gas and the process of hydrocarbon accumulation of different hydrocarbon phases. On the whole, the Jurassic and Triassic terrestrial source rocks are the main sources for the hydrocarbon in the Kuqa Depression. The small differences in parent material may cause diversities in oil and gas amount, but the impact is small. The differences in oil and gas phase are mainly affected by maturity and the accumulation process, which closely relates with each other. Oil and gas at different thermal evolution stage can be captured in different accumulation process.展开更多
The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effe...The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source-reservoir-seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect.展开更多
The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existenc...The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.展开更多
Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum syste...Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum systems in modified residual basins or superposed basins. Itscore idea is to put emphasis on the study of the dynamic evolution of petroleum systems. Thetempo-spatial evolution, hydrocarbon-generating processes and hydrocarbon-generating intensities andamounts of resources in different geological stages of chief source rocks are mainly deducedbackward by 3-D basin modelling. The regularities of formation and destruction of oil and gasaccumulations are summarized by analyzing the fossil and existing oil and gas accumulations, thedirection of migration is studied by palaeo-structural analysis, and the dynamic evolution ofPalaeozoic and Mesozoic petroleum systems in southern China is studied according to stages of majortectonic movements. The authors suggest that the realistic exploration targets of Palaeozoic andMesozoic petroleum systems in southern China are secondary and hydrocarbon-regeneration petroleumsystems, while the existing primary petroleum systems are rare. They propose that the favourableareas for exploration of Palaeozoic and Mesozoic petroleum systems in southern China are the frontarea of the Daba Mountains and the steep anticlinal zone on the western side of the Shizhusynclinorium in northeastern Sichuan, the Funin-Yancheng-Hai'an-Xinghua-Baoying area in the northernJiangsu basin, the Qianjiang-Xiantao-Paizhou-Chacan 1 well area in the southern part of the Chenhuarea of the Jianghan basin, the South Poyang basin in Jiangxi and the North subbasin of the Chuxiongbasin. This view has been supported by the discovery of the Zhujiadun gas field in the Yanchengsubbasin of the northern Jiangsu basin and the Kaixiantaixi oil-bearing structure in the southernpart of the Chenhu area of the Jianghan basin.展开更多
The Junggar basin is located in the northern part of Xinjiang of China. It is part of the Kazakstan plate, surrounded by the Paleozoic folded mountains: the Halaart, Zayier and Chepaizi Mountains in the northwest, the...The Junggar basin is located in the northern part of Xinjiang of China. It is part of the Kazakstan plate, surrounded by the Paleozoic folded mountains: the Halaart, Zayier and Chepaizi Mountains in the northwest, the Qingelidi and Karamaili Mountains in the northeast, and the Tianshan Mountains in the south. In different evolution stages, the basin's types are different, and the stratigraphy and deposition are also different. From the Carboniferous to Tertiary the basin has in turn gone through rift basin, collision foreland basin, intraplate depression basin and regenerated foreland basin. Based on an analysis of thermal evolution history and buried history of the source rocks, three major periods of oil generation are found in the basin. According to the characteristics of source rock distribution, evolution, oil-source correlation, structure and multi-phase and mixed pools, the Junggar basin could be divided into 4 composite petroleum systems. Due to the variation in sedimentary facies, difference in structural patterns and development histories, the petroleum pool-forming conditions in different areas and horizons are greatly different, so are the petroleum pool types, the accumulation mechanisms in different areas and horizons.展开更多
According to the theory of petroleum system and the characteristics of petroleum geology, the Xihu depression in the East China Sea shelf basin is divided into four petroleum systems: the Pinghu Formation as source ro...According to the theory of petroleum system and the characteristics of petroleum geology, the Xihu depression in the East China Sea shelf basin is divided into four petroleum systems: the Pinghu Formation as source rock and the Huagang Formation as reservoir rock, the Huagang Formation as source rock and reservoir rock, the Paleocene as source rock and the burial-hill as reservoir rock, and the Miocene as source rock and reservoir rock. The system with the Pinghu Formation as source rock and the Huagang Formation as reservoir rock is the most important one in the depression, which has high hydrocarbon generation and accumulation efficiency and is the most important object to hydrocarbon exploration at present.展开更多
The Cretaceous Kazhdumi and Gurpi forma- tions, Ahmadi Member of the Sarvak Formation, and Paleogene Pabdeh Formation are important source rock candidates of the Middle Cretaceous-Early Miocene pet- roleum system in t...The Cretaceous Kazhdumi and Gurpi forma- tions, Ahmadi Member of the Sarvak Formation, and Paleogene Pabdeh Formation are important source rock candidates of the Middle Cretaceous-Early Miocene pet- roleum system in the Persian Gulf. This study characterizes generation potential, type of organic matter, and thermal maturity of 262 cutting samples (marls and argillaceous limestones) from these rock units taken from 16 fields in the Iranian sector of the Persian Gulf. In addition, the burial and thermal histories of these source rocks were analyzed by one-dimensional basin modeling. Based on the total organic carbon and genetic potential values, fair hydro- carbon generation potential is suggested for the studied samples. Based on Tma~ and vitrinite reflectance values, the studied samples are thermally immature to mature for hydrocarbon generation. The generated models indicate that studied source rocks are immature in central wells. The Gurpi and Pabdeh formations are immature and the Ahmadi Member and Kazhdumi Formation are early mature in the western wells. The Pabdeh Formation is within the main oil window and other source rocks are at the late oil window in the eastern wells. The hydrocarbon expulsion from the source rocks began after deposition of related caprocks which ensures entrapment and preserva- tion of migrated hydrocarbon.展开更多
North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one ...North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one structural domain to another areally and from one stratigraphic interval to another vertically. Analyses of the essential elements and geological processes of the Paleozoic petroleum system indicate that the distribution of the Lower Silurian shale source rocks, the development of a thick Mesozoic overburden, the presence of the Upper Triassic-Lower Jurassic evaporite seal are the most important factors goveming the distribution of the Paleozoic-sourced hydrocarbons in North Africa. The Mesozoic sequence plays a critical role for hydrocarbons to accumulate by enabling the maturation of the Paleozoic source rocks during the Mesozoic-Paleogene times and preserving the accumulated hydrocarbons. Basins and surrounding uplifts, particularly the latter, with a thick Mesozoic sequence and a regional evaporite seal generally have abundant hydrocarbons. Basins where only a thin Mesozoic overburden was developed tend to have a very poor to moderate hydrocarbon prospectivity.展开更多
The Taoudeni Basin is a typical steady intracratonic basin. Based on the distribution of effective source rocks in the Taoudeni Basin, combined with the structure characteristics of the basin and the distribution char...The Taoudeni Basin is a typical steady intracratonic basin. Based on the distribution of effective source rocks in the Taoudeni Basin, combined with the structure characteristics of the basin and the distribution characteristics of reservoir beds, two petroleum systems are recognized in the basin: the infra-Cambrian petroleum system and the Silurian petroleum system. Structural uplift and timing of petroleum generation controlled the timing of petroleum charging and preservation of hydrocarbon accumulations. Maturity, evolution history, and distribution of effective source rocks controlled hydrocarbon richness. The geological key factors and geological processes controlled the type of hydrocarbon accumulations.展开更多
There are two different types of oils—high-wax oil and normal oil—found in the Damintun Depression of Liaohe Oilfield after several years of exploration and development, but their distributions and origins had confu...There are two different types of oils—high-wax oil and normal oil—found in the Damintun Depression of Liaohe Oilfield after several years of exploration and development, but their distributions and origins had confused the explorers in the oilfield. The introduction of petroleum-system concept shifts the view of geoscientists from geology and geophysics to oil, gas and their related source rocks. After detailed study, two petroleum systems have been identified in the Damintun Depression: (1) the ES42-Ar buried hill petroleum system (called the high-wax oil petroleum system) and (2) the ES41+ES34-ES4 and ES3 petroleum system (called the normal oil petroleum system). Based on the detailed analysis of the basic components, and all the geological processes required to create these elements of the two petroleum systems, it is put forward that targets for future exploration should include the area near Dongshenpu-Xinglongpu and the area near the Anfutun Sag. This provides scientific basis and has theoretical and practical meaning for the exploration and development.展开更多
The South Malang Region is located in the south-eastern part of the Southern Mountain Volcanic Arc;it presents different opportunities for hydrocarbon exploration. The stratigraphy of the study area from old to young ...The South Malang Region is located in the south-eastern part of the Southern Mountain Volcanic Arc;it presents different opportunities for hydrocarbon exploration. The stratigraphy of the study area from old to young consists of Oligocene Volcanic rocks (Mandalika, Watupatok, and Arjosari Formation), Early Miocene Carbonates (Campurdarat and Jaten Formation), Middle Miocene Volcanic (Wuni Formation), Late Miocene-Pliocene Carbonates (Nampol, Oyo, and Wonosari Formation), and Holocene alluvial deposits (Kalipucang Formation). The dominance of volcanic rocks makes this area considered an area without hydrocarbon play prospects. Petroleum system potential is revealed by evaluating and analyzing potential source rock and reservoir rock outcrop samples. The study shows that the Nampol Formation can be considered as a gas-prone source rock, with type III kerogen, total organic content ranging from 3.48 - 26.18 wt%, and possess the potential to produce good to very good hydrocarbons and a hydrogen index ranging from 43 to 86 mgHC/g TOC. Furthermore, rock core analysis and petrographic studies were carried out on the Nampol sandstone where the rock samples showed good reservoir properties. However, the Nampol and Wonosari limestone that was considered as the secondary target for reservoir possesses a low quality of reservoir properties. This study shows that there is a potential for petroleum system existence in the Southern Mountain subvolcanic arc, which is indicated by the presence of source rock and potential reservoir rock as one of the various elements and processes present in a petroleum system.展开更多
Based on a detailed survey of the distribution and organic geochemical characteristics of potential source rocks in the South Slope of the Niuzhuang Sag, Bohai Bay Basin, eastern China, a new approach to assess the am...Based on a detailed survey of the distribution and organic geochemical characteristics of potential source rocks in the South Slope of the Niuzhuang Sag, Bohai Bay Basin, eastern China, a new approach to assess the amount of hydrocarbons generated and expelled has been developed. The approach is applicable to evaluate hydrocarbons with different genetic mechanisms. The results show that the models for hydrocarbon generation and expulsion vary with potential source rocks, depending on thermal maturity, types of organic matter and paleoenvironment. Hydrocarbons are mostly generated and expelled from source rocks within the normal oil window. It was calculated that the special interval (algal-rich shales of the ES4 member formed in brackish environments) in the South Slope of the Niuzhuang Sag has a much higher potential of immature oil generation than the other intervals in the area. This suggests that hydrocarbons can definitely be generated in early diagenesis, especially under certain special geological settings. The proportion of hydrocarbons generated and expelled from the ES4 shales in the early diagenetic stage is up to 26.75% and 17.36%, respectively. It was also observed that laminated shales have a much higher expulsion efficiency than massive mudstones. In contrast, the special interval of the ES4 shales proposed from previous studies is probably not the whole rock for oil in the South Slope of the Niuzhuang Sag because of the small proportion of the gross volume and corresponding low percentage of hydrocarbons generated and expelled. A much lower expulsion efficiency of the source rock during the early stage relative to that within the normal oil window has been calculated. Our results indicate that the ES4 mudstones rather than the shales deposited in the Niuzhuang and Guangli Sag are the main source rocks for the oil discovered.展开更多
基金Supported by the National Natural Science Foundation of China(U22B6002)PetroChina Science Research and Technology Development Project(2021DJ0101)。
文摘This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas-tight oil/gas-shale oil/gas sequential accumulation and the hydrocarbon accumulation models and mechanisms of the whole petroleum system.It delineates the geological model,flow model,and production mechanism of shale and tight reservoirs,and proposes future research orientations.The main structure of the whole petroleum system includes three fluid dynamic fields,three types of oil and gas reservoirs/resources,and two types of reservoir-forming processes.Conventional oil/gas,tight oil/gas,and shale oil/gas are orderly in generation time and spatial distribution,and sequentially rational in genetic mechanism,showing the pattern of sequential accumulation.The whole petroleum system involves two categories of hydrocarbon accumulation models:hydrocarbon accumulation in the detrital basin and hydrocarbon accumulation in the carbonate basin/formation.The accumulation of unconventional oil/gas is self-containment,which is microscopically driven by the intermolecular force(van der Waals force).The unconventional oil/gas production has proved that the geological model,flow model,and production mechanism of shale and tight reservoirs represent a new and complex field that needs further study.Shale oil/gas must be the most important resource replacement for oil and gas resources of China.Future research efforts include:(1)the characteristics of the whole petroleum system in carbonate basins and the source-reservoir coupling patterns in the evolution of composite basins;(2)flow mechanisms in migration,accumulation,and production of shale oil/gas and tight oil/gas;(3)geological characteristics and enrichment of deep and ultra-deep shale oil/gas,tight oil/gas and coalbed methane;(4)resource evaluation and new generation of basin simulation technology of the whole petroleum system;(5)research on earth system-earth organic rock and fossil fuel system-whole petroleum system.
基金Supported by the National Natural Science Foundation of China(42090022)。
文摘Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.
基金Supported by the“Tianshan Talent”Project of Xinjiang(2022TSYCLJ0070)CNPC Technology Project(2023ZZ18)。
文摘Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.
文摘The paleo-temperature(Th)data from fluid inclusions are utilized for thermal history modelling using PetroMod software.Generally,bottom hole temperature(BHT)and vitrinite reflectance(Ro)measurements are widely used in petroleum system modelling(PSM)in the oil industry for calibration purposes.Th representing the minimum temperature of fluid entrapment estimated from fluid-inclusion study provides extra support to build the thermal models for PSM.Fluid inclusion parameters along with Rock-Eval pyrolysis analysis have been used to predict the maturity of oil in terms of API gravity as well as the maturity of source rocks respectively.Two exploratory wells RV-1(Mumbai Offshore Basin)and KK4C-A-1(Kerala-Konkan Offshore Basin),India were examined and the T_(h)from most of the fluid inclusions of wells RV-1 and KK4C-A-1 fell in the oil window range of 60-140℃suggesting thermal conditions favourable for oil generation in both of the wells.T_(h)of coeval aqueous inclusions along with the Hydrocarbon Fluid inclusions(HCFIs)was used to calibrate PSM.Vital parameters show that source rocks of well RV-1 are mature and that of well KK4C-A-1 are immature.Two sets of PSM are created in terms of generation and expulsion for the dry wells RV-1 and KK4C-A-1 and calibrated each well using fluid inclusion Th and BHT.From the fluid inclusion analysis method,it is evident that hydrocarbon generation happened in both wells and the paleo-temperature indicates that the formations of both wells were subjected to temperatures in the oil window range,even though it was designated as dry wells in the present scenario.The present study highlights the application of fluid inclusion paleo-temperature(Th)during calibration instead of commonly used methods.We could obtain desirable and accurate data output from PSM using T_(h) calibration.
基金This work was supported by the major science and technology projects of CNPC during the“14th five-year plan”(Grant number 2021DJ0101)。
文摘The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside.
基金Supported by the National Natural Science Foundation of China (41872128)the CNPC Major Science and Technology Project (2021DJ0101)。
文摘Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is determined. Then, taking the Carboniferous Benxi Formation and the Permian Taiyuan Formation and Shanxi Formation as examples, the main controlling factors of gas accumulation and enrichment are discussed, and the gas enrichment models of total petroleum system are established. The results show that the source rocks, faults and tight reservoirs and their mutual coupling relations control the distribution and enrichment of gas. Specifically, the distribution and hydrocarbon generation capacity of source rocks control the enrichment degree and distribution range of retained shale gas and tight gas in the source. The coupling between the hydrocarbon generation capacity of source rocks and the physical properties of tight reservoirs controls the distribution and sweet spot development of near-source tight gas in the basin center. The far-source tight gas in the basin margin is mainly controlled by the distribution of faults, and the distribution of inner-source, near-source and far-source gas is adjusted and reformed by faults. Generally, the Upper Paleozoic gas in the Ordos Basin is recognized in four enrichment models: inner-source coalbed gas and shale gas, inner-source tight sandstone gas, near-source tight gas, and far-source fault-transported gas. In the Ordos Basin, inner-source tight gas and near-source tight gas are the current focuses of exploration, and inner-source coalbed gas and shale gas and far-source gas will be important potential targets in the future.
基金Supported by the PetroChina Major Science and Technology Project (2016E0201,2021ZZ10,2021DJ0101)。
文摘Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas types and distribution characteristics,reservoir-forming dynamics,source-reservoir relationship and hydrocarbon accumulation model of the whole petroleum system in shallow and medium strata in the northern part of Songliao Basin are systematically studied.The shallow-medium strata in northern Songliao Basin have the conditions for the formation of whole petroleum system,with sufficient oil and gas sources,diverse reservoir types and well-developed transport system,forming a whole petroleum system centered on the source rocks of the Cretaceous Qingshankou Formation.Different types of oil and gas resources in the whole petroleum system are correlated with each other in terms of depositional system,lithologic association and physical property changes,and they,to a certain extent,have created the spatial framework with orderly symbiosis of shallow-medium conventional oil reservoirs,tight oil reservoirs and shale oil reservoirs in northern Songliao Basin.Vertically,the resources are endowed as conventional oil above source,shale oil/tight oil within source,and tight oil below source.Horizontally,conventional oil,tight oil,interlayer-type shale oil,and pure shale-type shale oil are developed in an orderly way,from the margin of the basin to the center of the depression.Three hydrocarbon accumulation models are recognized for the whole petroleum system in northern Songliao Basin,namely,buoyancy-driven charging of conventional oil above source,retention of shale oil within source,and pressure differential-driven charging of tight oil below source.
基金supported by the Tarim Oil Field Research InstituteNational Natural Science Foundation (sanctified number:40602016)National Key Basic Research and Development Projects (Itemnumber:113404GJ0003)
文摘Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differences in geochemical features. According to the characteristics and differences in oil and gas phase, the petroleum system can be divided into five categories: oil reservoir, wet gas reservoir, condensate gas-rich reservoir, condensate gas-poor reservoir and dry gas reservoir. The causes for the diversities in oil and gas phases include diversities of the sources of parent material, maturity of natural gas and the process of hydrocarbon accumulation of different hydrocarbon phases. On the whole, the Jurassic and Triassic terrestrial source rocks are the main sources for the hydrocarbon in the Kuqa Depression. The small differences in parent material may cause diversities in oil and gas amount, but the impact is small. The differences in oil and gas phase are mainly affected by maturity and the accumulation process, which closely relates with each other. Oil and gas at different thermal evolution stage can be captured in different accumulation process.
基金supported by the CNPC Science and Technology Study Financing Project (EDR/CN-01-102)
文摘The present paper mainly studies the petroleum system of the Sufyan Depression in the Muglad Basin of central Africa and analyzes its control of hydrocarbon accumulation. On the basis of comprehensive analysis of effective source rock, reservoir bed types and source-reservoir-seal assemblages, petroleum system theory has been used to classify the petroleum system of the Sufyan Depression. Vertically, the Sufyan Depression consists of two subsystems. One is an Abu Gabra subsystem as a self generating, accumulating and sealing assemblage. The other subsystem is composed of an Abu Gabra source rock, Bentiu channel sandstone reservoir and Darfur group shale seal, which is a prolific assemblage in this area. Laterally, the Sufyan Depression is divided into eastern and western parts with separate hydrocarbon generation centers more than 10 000 m deep. The potential of the petroleum system is tremendous. Recently, there has been a great breakthrough in exploration. The Sufyan C-1 well drilled in the central structural belt obtained high-yielding oil flow exceeding 100 tons per day and controlled geologic reserves of tens of millions of tons. The total resource potential of the Sufyan Depression is considerable. The central structural belt is most favorable as an exploration and development prospect.
文摘The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.
文摘Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum systems in modified residual basins or superposed basins. Itscore idea is to put emphasis on the study of the dynamic evolution of petroleum systems. Thetempo-spatial evolution, hydrocarbon-generating processes and hydrocarbon-generating intensities andamounts of resources in different geological stages of chief source rocks are mainly deducedbackward by 3-D basin modelling. The regularities of formation and destruction of oil and gasaccumulations are summarized by analyzing the fossil and existing oil and gas accumulations, thedirection of migration is studied by palaeo-structural analysis, and the dynamic evolution ofPalaeozoic and Mesozoic petroleum systems in southern China is studied according to stages of majortectonic movements. The authors suggest that the realistic exploration targets of Palaeozoic andMesozoic petroleum systems in southern China are secondary and hydrocarbon-regeneration petroleumsystems, while the existing primary petroleum systems are rare. They propose that the favourableareas for exploration of Palaeozoic and Mesozoic petroleum systems in southern China are the frontarea of the Daba Mountains and the steep anticlinal zone on the western side of the Shizhusynclinorium in northeastern Sichuan, the Funin-Yancheng-Hai'an-Xinghua-Baoying area in the northernJiangsu basin, the Qianjiang-Xiantao-Paizhou-Chacan 1 well area in the southern part of the Chenhuarea of the Jianghan basin, the South Poyang basin in Jiangxi and the North subbasin of the Chuxiongbasin. This view has been supported by the discovery of the Zhujiadun gas field in the Yanchengsubbasin of the northern Jiangsu basin and the Kaixiantaixi oil-bearing structure in the southernpart of the Chenhu area of the Jianghan basin.
文摘The Junggar basin is located in the northern part of Xinjiang of China. It is part of the Kazakstan plate, surrounded by the Paleozoic folded mountains: the Halaart, Zayier and Chepaizi Mountains in the northwest, the Qingelidi and Karamaili Mountains in the northeast, and the Tianshan Mountains in the south. In different evolution stages, the basin's types are different, and the stratigraphy and deposition are also different. From the Carboniferous to Tertiary the basin has in turn gone through rift basin, collision foreland basin, intraplate depression basin and regenerated foreland basin. Based on an analysis of thermal evolution history and buried history of the source rocks, three major periods of oil generation are found in the basin. According to the characteristics of source rock distribution, evolution, oil-source correlation, structure and multi-phase and mixed pools, the Junggar basin could be divided into 4 composite petroleum systems. Due to the variation in sedimentary facies, difference in structural patterns and development histories, the petroleum pool-forming conditions in different areas and horizons are greatly different, so are the petroleum pool types, the accumulation mechanisms in different areas and horizons.
基金This paper is supported by the National Natural Science Foundation of China (No. 40172051) the Foundation for University Ke
文摘According to the theory of petroleum system and the characteristics of petroleum geology, the Xihu depression in the East China Sea shelf basin is divided into four petroleum systems: the Pinghu Formation as source rock and the Huagang Formation as reservoir rock, the Huagang Formation as source rock and reservoir rock, the Paleocene as source rock and the burial-hill as reservoir rock, and the Miocene as source rock and reservoir rock. The system with the Pinghu Formation as source rock and the Huagang Formation as reservoir rock is the most important one in the depression, which has high hydrocarbon generation and accumulation efficiency and is the most important object to hydrocarbon exploration at present.
文摘The Cretaceous Kazhdumi and Gurpi forma- tions, Ahmadi Member of the Sarvak Formation, and Paleogene Pabdeh Formation are important source rock candidates of the Middle Cretaceous-Early Miocene pet- roleum system in the Persian Gulf. This study characterizes generation potential, type of organic matter, and thermal maturity of 262 cutting samples (marls and argillaceous limestones) from these rock units taken from 16 fields in the Iranian sector of the Persian Gulf. In addition, the burial and thermal histories of these source rocks were analyzed by one-dimensional basin modeling. Based on the total organic carbon and genetic potential values, fair hydro- carbon generation potential is suggested for the studied samples. Based on Tma~ and vitrinite reflectance values, the studied samples are thermally immature to mature for hydrocarbon generation. The generated models indicate that studied source rocks are immature in central wells. The Gurpi and Pabdeh formations are immature and the Ahmadi Member and Kazhdumi Formation are early mature in the western wells. The Pabdeh Formation is within the main oil window and other source rocks are at the late oil window in the eastern wells. The hydrocarbon expulsion from the source rocks began after deposition of related caprocks which ensures entrapment and preserva- tion of migrated hydrocarbon.
文摘North Africa, which is one of the main oil and gas producing regions in the world, is best known for its subsalt Paleozoic-Triassic reservoirs and Paleozoic source rocks. Hydrocarbon abundance varies greatly from one structural domain to another areally and from one stratigraphic interval to another vertically. Analyses of the essential elements and geological processes of the Paleozoic petroleum system indicate that the distribution of the Lower Silurian shale source rocks, the development of a thick Mesozoic overburden, the presence of the Upper Triassic-Lower Jurassic evaporite seal are the most important factors goveming the distribution of the Paleozoic-sourced hydrocarbons in North Africa. The Mesozoic sequence plays a critical role for hydrocarbons to accumulate by enabling the maturation of the Paleozoic source rocks during the Mesozoic-Paleogene times and preserving the accumulated hydrocarbons. Basins and surrounding uplifts, particularly the latter, with a thick Mesozoic sequence and a regional evaporite seal generally have abundant hydrocarbons. Basins where only a thin Mesozoic overburden was developed tend to have a very poor to moderate hydrocarbon prospectivity.
文摘The Taoudeni Basin is a typical steady intracratonic basin. Based on the distribution of effective source rocks in the Taoudeni Basin, combined with the structure characteristics of the basin and the distribution characteristics of reservoir beds, two petroleum systems are recognized in the basin: the infra-Cambrian petroleum system and the Silurian petroleum system. Structural uplift and timing of petroleum generation controlled the timing of petroleum charging and preservation of hydrocarbon accumulations. Maturity, evolution history, and distribution of effective source rocks controlled hydrocarbon richness. The geological key factors and geological processes controlled the type of hydrocarbon accumulations.
文摘There are two different types of oils—high-wax oil and normal oil—found in the Damintun Depression of Liaohe Oilfield after several years of exploration and development, but their distributions and origins had confused the explorers in the oilfield. The introduction of petroleum-system concept shifts the view of geoscientists from geology and geophysics to oil, gas and their related source rocks. After detailed study, two petroleum systems have been identified in the Damintun Depression: (1) the ES42-Ar buried hill petroleum system (called the high-wax oil petroleum system) and (2) the ES41+ES34-ES4 and ES3 petroleum system (called the normal oil petroleum system). Based on the detailed analysis of the basic components, and all the geological processes required to create these elements of the two petroleum systems, it is put forward that targets for future exploration should include the area near Dongshenpu-Xinglongpu and the area near the Anfutun Sag. This provides scientific basis and has theoretical and practical meaning for the exploration and development.
文摘The South Malang Region is located in the south-eastern part of the Southern Mountain Volcanic Arc;it presents different opportunities for hydrocarbon exploration. The stratigraphy of the study area from old to young consists of Oligocene Volcanic rocks (Mandalika, Watupatok, and Arjosari Formation), Early Miocene Carbonates (Campurdarat and Jaten Formation), Middle Miocene Volcanic (Wuni Formation), Late Miocene-Pliocene Carbonates (Nampol, Oyo, and Wonosari Formation), and Holocene alluvial deposits (Kalipucang Formation). The dominance of volcanic rocks makes this area considered an area without hydrocarbon play prospects. Petroleum system potential is revealed by evaluating and analyzing potential source rock and reservoir rock outcrop samples. The study shows that the Nampol Formation can be considered as a gas-prone source rock, with type III kerogen, total organic content ranging from 3.48 - 26.18 wt%, and possess the potential to produce good to very good hydrocarbons and a hydrogen index ranging from 43 to 86 mgHC/g TOC. Furthermore, rock core analysis and petrographic studies were carried out on the Nampol sandstone where the rock samples showed good reservoir properties. However, the Nampol and Wonosari limestone that was considered as the secondary target for reservoir possesses a low quality of reservoir properties. This study shows that there is a potential for petroleum system existence in the Southern Mountain subvolcanic arc, which is indicated by the presence of source rock and potential reservoir rock as one of the various elements and processes present in a petroleum system.
基金This study is part of the China National“973”Key Research and Development Program#G199943310a Professional Enhancement Program of the Natural Resources of Canada Earth Science Sector,under the collaborative research agreement between the Geological Survey of Canada(Calgary)and the University of Petroleum(Beijing)+1 种基金The funding for this project was provided by the National Natural Science Foundation of China(under the“973”National Key Research and Development Program of China#G1999043310)the Geological Survey of Canada and the Chinese National Petrochemical Corporation.
文摘Based on a detailed survey of the distribution and organic geochemical characteristics of potential source rocks in the South Slope of the Niuzhuang Sag, Bohai Bay Basin, eastern China, a new approach to assess the amount of hydrocarbons generated and expelled has been developed. The approach is applicable to evaluate hydrocarbons with different genetic mechanisms. The results show that the models for hydrocarbon generation and expulsion vary with potential source rocks, depending on thermal maturity, types of organic matter and paleoenvironment. Hydrocarbons are mostly generated and expelled from source rocks within the normal oil window. It was calculated that the special interval (algal-rich shales of the ES4 member formed in brackish environments) in the South Slope of the Niuzhuang Sag has a much higher potential of immature oil generation than the other intervals in the area. This suggests that hydrocarbons can definitely be generated in early diagenesis, especially under certain special geological settings. The proportion of hydrocarbons generated and expelled from the ES4 shales in the early diagenetic stage is up to 26.75% and 17.36%, respectively. It was also observed that laminated shales have a much higher expulsion efficiency than massive mudstones. In contrast, the special interval of the ES4 shales proposed from previous studies is probably not the whole rock for oil in the South Slope of the Niuzhuang Sag because of the small proportion of the gross volume and corresponding low percentage of hydrocarbons generated and expelled. A much lower expulsion efficiency of the source rock during the early stage relative to that within the normal oil window has been calculated. Our results indicate that the ES4 mudstones rather than the shales deposited in the Niuzhuang and Guangli Sag are the main source rocks for the oil discovered.