A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS) and petroleum disulfonates (PDS) in crude oil that was simply diluted wi...A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS) and petroleum disulfonates (PDS) in crude oil that was simply diluted with the dichloromethane/methanol (60/40). The high performance liquid chromatography (HPLC) system consisted of a clean-up column and an analytical column, which were connected with two six-port switching valves. Detection of petroleum sulfonates was available and repeatable. This method has been successfully applied to determine PMS and PDS in crude oil samples from Shengli oil field.展开更多
The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by mea...The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by means of zeta potential measurement and infrared spectroscopic analysis. The single mineral experiments showed that andalusite got good floatability in acidic pH region while quartz exhibited very poor floatability in the whole pH range. At pH 3, the presence of Fe3+ obviously activated quartz, causing the identical flotation behavior of the two minerals, and calcium lignosulphonate exhibited good selective inhibition to quartz. The real ore test results showed that andalusite concentrate with 53.46% Al2O3 and quartz concentrate with 92.74% SiO2 were obtained. The zeta potential and infrared spectroscopic analysis results indicated that chemical adsorption occurred between sodium petroleum sulfonate and andalusite.展开更多
With the application of HIGEE process intensification technology, petroleum sulfonate surfactant used for enhanced oil recovery was synthesized from petroleum fraction of Shengli crude oil with three sulfonating agent...With the application of HIGEE process intensification technology, petroleum sulfonate surfactant used for enhanced oil recovery was synthesized from petroleum fraction of Shengli crude oil with three sulfonating agents, including diluted liquid sulfur trioxide, diluted gaseous sulfur trioxide and fuming sulfuric acid. For each sulfonating agent, different operation modes (liquid-liquid or gas-liquid reaction with semi-continuous or continuous operation) were applied. The effects of various experimental conditions, such as solvent/oil mass ratio, sulfonating agent/oil mass ratio, gas/liquid ratio, gas concentration, reaction temperature, rotating speed, circulation ratio, reaction time and aging time, on the content of active matter and unsulfonated oil were investigated. Under relatively optimal reaction conditions, the target product was prepared with high mass content of active matter (up to 45.3%) and extremely low oil/water interfacial tension (4.5×10 –3 mN·m –1 ). The product quality and process efficiency are higher compared with traditional sulfonation technology.展开更多
基金the National Nature Science Foundation of China(No.20675085)the support from the Program of the Light in China's Western Region(2003)the Province Nature Science Foundation of Gansu(No.3ZS041-A25-23).
文摘A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS) and petroleum disulfonates (PDS) in crude oil that was simply diluted with the dichloromethane/methanol (60/40). The high performance liquid chromatography (HPLC) system consisted of a clean-up column and an analytical column, which were connected with two six-port switching valves. Detection of petroleum sulfonates was available and repeatable. This method has been successfully applied to determine PMS and PDS in crude oil samples from Shengli oil field.
文摘The floatability of andalusite and quartz was studied using sodium petroleum sulfonate as collector, being successfully applied in the real ore separation. The collecting performance on minerals was interpreted by means of zeta potential measurement and infrared spectroscopic analysis. The single mineral experiments showed that andalusite got good floatability in acidic pH region while quartz exhibited very poor floatability in the whole pH range. At pH 3, the presence of Fe3+ obviously activated quartz, causing the identical flotation behavior of the two minerals, and calcium lignosulphonate exhibited good selective inhibition to quartz. The real ore test results showed that andalusite concentrate with 53.46% Al2O3 and quartz concentrate with 92.74% SiO2 were obtained. The zeta potential and infrared spectroscopic analysis results indicated that chemical adsorption occurred between sodium petroleum sulfonate and andalusite.
基金Supported by the National Natural Science Foundation of China (20821004 20990221) the National High Technology Research and Development Program of China (2006AA030202)
文摘With the application of HIGEE process intensification technology, petroleum sulfonate surfactant used for enhanced oil recovery was synthesized from petroleum fraction of Shengli crude oil with three sulfonating agents, including diluted liquid sulfur trioxide, diluted gaseous sulfur trioxide and fuming sulfuric acid. For each sulfonating agent, different operation modes (liquid-liquid or gas-liquid reaction with semi-continuous or continuous operation) were applied. The effects of various experimental conditions, such as solvent/oil mass ratio, sulfonating agent/oil mass ratio, gas/liquid ratio, gas concentration, reaction temperature, rotating speed, circulation ratio, reaction time and aging time, on the content of active matter and unsulfonated oil were investigated. Under relatively optimal reaction conditions, the target product was prepared with high mass content of active matter (up to 45.3%) and extremely low oil/water interfacial tension (4.5×10 –3 mN·m –1 ). The product quality and process efficiency are higher compared with traditional sulfonation technology.