This article shows the probabilistic modeling of hydrocarbon spills on the surface of the sea, using climatology data of oil spill trajectories yielded by applying the lagrangian model PETROMAR-3D. To achieve this goa...This article shows the probabilistic modeling of hydrocarbon spills on the surface of the sea, using climatology data of oil spill trajectories yielded by applying the lagrangian model PETROMAR-3D. To achieve this goal, several computing and statistical tools were used to develop the probabilistic modeling solution based in the methodology of Guo. Solution was implemented using a databases approach and SQL language. A case study is presented which is based on a hypothetical spill in a location inside the Exclusive Economic Zone of Cuba. Important outputs and products of probabilistic modeling were obtained, which are very useful for decision-makers and operators in charge to face oil spill accidents and prepare contingency plans to minimize its effects. In order to study the relationship between the initial trajectory and the arrival of hydrocarbons spills to the coast, a new approach is introduced as an incoming perspective for modeling. It consists in storage in databases the direction of movement of the oil slick at the first 24 hours. The probabilistic modeling solution presented is of great importance for hazard studies of oil spills in Cuban coastal areas.展开更多
文摘This article shows the probabilistic modeling of hydrocarbon spills on the surface of the sea, using climatology data of oil spill trajectories yielded by applying the lagrangian model PETROMAR-3D. To achieve this goal, several computing and statistical tools were used to develop the probabilistic modeling solution based in the methodology of Guo. Solution was implemented using a databases approach and SQL language. A case study is presented which is based on a hypothetical spill in a location inside the Exclusive Economic Zone of Cuba. Important outputs and products of probabilistic modeling were obtained, which are very useful for decision-makers and operators in charge to face oil spill accidents and prepare contingency plans to minimize its effects. In order to study the relationship between the initial trajectory and the arrival of hydrocarbons spills to the coast, a new approach is introduced as an incoming perspective for modeling. It consists in storage in databases the direction of movement of the oil slick at the first 24 hours. The probabilistic modeling solution presented is of great importance for hazard studies of oil spills in Cuban coastal areas.