The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and...The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness.展开更多
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
Shale needs to contain a sufficient amount of gas to make it viable for exploitation. The continental heterogeneous shale formation in the Yan-chang (YC) area is investigated by firstly measuring the shale gas conte...Shale needs to contain a sufficient amount of gas to make it viable for exploitation. The continental heterogeneous shale formation in the Yan-chang (YC) area is investigated by firstly measuring the shale gas content in a laboratory and then investigating use of a theoretical prediction model. Key factors controlling the shale gas content are determined, and a prediction model for free gas content is established according to the equation of gas state and a new petrophysical volume model. Application of the Langmuir volume constant and pressure constant obtained from results of adsorption isotherms is found to be limited because these constants are greatly affected by experimental temperature and pressures. Therefore, using measurements of adsorption isotherms and thermodynamic theory, the influence of temperature, total organic carbon (TOC), and mineralogy on Langmuir volume constants and pressure constants are investigated in detail. A prediction model for the Langmuir pressure constant with a correction of temperatures is then established, and a prediction model for the Langmuir volume constant with correction of temperature, TOC, and quartz contents is also proposed. Using these corrected Langmuir constants, application of the Langmuir model determined using experimental adsorption isotherms is extrapolated to reservoir temperature, pressure, and lithological conditions, and a method for the prediction of shale gas content using well logs is established. Finally, this method is successfully applied to predict the shale gas content of the continental shale formation in the YC area, and practical application is shown to deliver good results with high precision.展开更多
Three-dimensional(3 D)static modelling techniques are applied to the characterization of the Qishn Formation(Fm.)in the Sharyoof oil field locating within the Masila basin,southeastern Yemen.The present study was init...Three-dimensional(3 D)static modelling techniques are applied to the characterization of the Qishn Formation(Fm.)in the Sharyoof oil field locating within the Masila basin,southeastern Yemen.The present study was initiated by the seismic structural interpretation,followed by building a 3 D structural framework,in addition to analysing well log data and from these,3 D facies and petrophysical models are constructed.In the Sharyoof oil field,the Qishn Fm.exhibits depth values within the range of 400-780 m below sea level,with a general increase towards the SSE.A set of high dip angle normal faults with a general ENE-WSW trend dissect the rocks.The strata are also folded as a main anticline with an axis that is parallel to the fault trend,formed as a result of basement uplift.According to the facies models,the Qishn Fm.comprises 43.83% limestone,21.53% shale,21.26% sandstone,13.21% siltstone and 0.17% dolomite.The Qishn Carbonates Member has low porosity values making it a potential seal for the underlying reservoirs whereas the Upper Qishn Clastics SI A and C have good reservoir quality and SIB has fair reservoir quality.The Upper Qishn Clastics S2 and S3 also have fair reservoir quality,while the Lower Qishn Clastics zone has good reservoir quality.The water saturation decreases towards the west and east and increases towards north and south.The total original oil in-place(OOIP)of the Upper Qishn clastics is 106 million STB within the SI A,SIC and S2 zones.Drilling of development wells is recommended in the eastern study area,where good trapping configuration is exhibited in addition to the presence of a potential seal(Upper Qishn Carbonates Member)and reservoir(Qishn Clastics Member)with high porosity and low water saturation.展开更多
Three-dimensional geological modeling of reservoirs is an essential tool to predict reservoir performance and improve the understanding of reservoir uniqueness in Es1 formation. The paper focuses on the use of petrel ...Three-dimensional geological modeling of reservoirs is an essential tool to predict reservoir performance and improve the understanding of reservoir uniqueness in Es1 formation. The paper focuses on the use of petrel software to build three-dimensional reservoir geological model which characterizes and assesses block Nv32 that located in the west of the Shenvsi oilfield in the south of Cangzhou city, Hebei province of China, and has an oil-bearing area of 1.4 km<sup>2</sup>. This study is depending on integration data from well logs of 22 wells which provided from geology, geophysics, and petrophysics to identify and provide precise depict of the subsurface internal structure and the reservoir heterogeneity. Input data was used to build the structural model, sedimentary facies model, petrophysical properties (porosity, permeability, saturation, and N/G model, and finally to determine the reservoir volume. The lithological facies were simulated using the assigned value method. Moreover, Petrophysical properties (Porosity, permeability, oil saturation and net to gross) were constructed for each zone using the Sequential Gaussian Simulation method to guide the distribution of petrophysical properties of Es1 formation, block Nv32. Statistical analysis of the porosity, permeability, oil saturation and N/G model present that the porosity occurrence distribution is mainly concern between 0.2% - 36.39% of block Nv32 with an average porosity value of 17.5%, permeability between 0.017 mD to 974.8 mD, having an average permeability of 59.44 mD, oil saturation between 0.00 to 0.95 having an average value of 0.22, and N/G is mainly concentrated between 0.01 to 1.00 within an average value of 0.61. This research has indicated the reliability of the three-dimensional model technique as a suitable tool to provide a sufficient understanding of petrophysical distribution. The south-western and north-western indicate that oilfield is very promising an exploratory well should be drilled to find out the thickness and size of the reservoir.展开更多
The Goldwyer Formation of the Canning Basin has been regarded as a highly prospective shale play.This study assesses the potential prospectivity of this source rock as an unconventional hydrocarbon resource.Considerin...The Goldwyer Formation of the Canning Basin has been regarded as a highly prospective shale play.This study assesses the potential prospectivity of this source rock as an unconventional hydrocarbon resource.Considering the sparsity of wells penetrating the Middle Ordovician Goldwyer across the vast underexplored area of the Canning Basin,a basin-wide study of the source rock is not warranted.Goldwyer assessment of the Barbwire Terrace,a subdivision of the Canning Basin,is carried out instead.This assessment includes the estimation of key shale play properties,such as,total organic carbon,total porosity,water saturation,and brittleness index.Each property was estimated from available well data by testing multiple estimation methods.TOC values were derived from multiple regressions of different well data.A simplified Archie's equation was used to estimate water saturation.Density porosity method was primarily used for total porosity estimations.Sonic data along with density were utilized to estimate brittleness index.Each property was then modelled across the Goldwyer Formation within the terrace.This provided geostatistical estimates on the propagation of such properties.In order to generate sweet spot maps for the Barbwire Terrace,averaged maps of different properties were combined in a weighted manner.This approach attempts to simplify the complexity of unconventional resource assessment,which therefore has provided a single product evaluating the prospectivity of the Goldwyer as a hydrocarbon resource.Results have shown that TOC and porosity are mostly the deciding factors for the prospectivity of this source rock,given that their values can be too small where the Goldwyer is deemed non-prospective.Nonetheless,sweet-spot maps show that most prospective zone is the Upper Goldwyer(Goldwyer I),followed by the upper parts of the Lower Goldwyer(Goldwyer III).More specifically,southern flanks of north-western and middle regions of the Barbwire Terrace tend to be more prospective.A stricter approach where cut-off values were applied for each property showed that sweet-spot maps are only prospective in the southern flanks of the middle Barbwire Terrace of Goldwyer I.展开更多
基金financially supported by the Sichuan Science and Technology Program (Grant No. 2023ZYD0158)the National Natural Science Foundation of China (Grant Nos. 42304147 and 42304076)。
文摘The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness.
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
基金sponsored by National Natural Science Foundation(Project number:41274136)
文摘Shale needs to contain a sufficient amount of gas to make it viable for exploitation. The continental heterogeneous shale formation in the Yan-chang (YC) area is investigated by firstly measuring the shale gas content in a laboratory and then investigating use of a theoretical prediction model. Key factors controlling the shale gas content are determined, and a prediction model for free gas content is established according to the equation of gas state and a new petrophysical volume model. Application of the Langmuir volume constant and pressure constant obtained from results of adsorption isotherms is found to be limited because these constants are greatly affected by experimental temperature and pressures. Therefore, using measurements of adsorption isotherms and thermodynamic theory, the influence of temperature, total organic carbon (TOC), and mineralogy on Langmuir volume constants and pressure constants are investigated in detail. A prediction model for the Langmuir pressure constant with a correction of temperatures is then established, and a prediction model for the Langmuir volume constant with correction of temperature, TOC, and quartz contents is also proposed. Using these corrected Langmuir constants, application of the Langmuir model determined using experimental adsorption isotherms is extrapolated to reservoir temperature, pressure, and lithological conditions, and a method for the prediction of shale gas content using well logs is established. Finally, this method is successfully applied to predict the shale gas content of the continental shale formation in the YC area, and practical application is shown to deliver good results with high precision.
基金supported by the RUDN Strategic Academic Leadership Program。
文摘Three-dimensional(3 D)static modelling techniques are applied to the characterization of the Qishn Formation(Fm.)in the Sharyoof oil field locating within the Masila basin,southeastern Yemen.The present study was initiated by the seismic structural interpretation,followed by building a 3 D structural framework,in addition to analysing well log data and from these,3 D facies and petrophysical models are constructed.In the Sharyoof oil field,the Qishn Fm.exhibits depth values within the range of 400-780 m below sea level,with a general increase towards the SSE.A set of high dip angle normal faults with a general ENE-WSW trend dissect the rocks.The strata are also folded as a main anticline with an axis that is parallel to the fault trend,formed as a result of basement uplift.According to the facies models,the Qishn Fm.comprises 43.83% limestone,21.53% shale,21.26% sandstone,13.21% siltstone and 0.17% dolomite.The Qishn Carbonates Member has low porosity values making it a potential seal for the underlying reservoirs whereas the Upper Qishn Clastics SI A and C have good reservoir quality and SIB has fair reservoir quality.The Upper Qishn Clastics S2 and S3 also have fair reservoir quality,while the Lower Qishn Clastics zone has good reservoir quality.The water saturation decreases towards the west and east and increases towards north and south.The total original oil in-place(OOIP)of the Upper Qishn clastics is 106 million STB within the SI A,SIC and S2 zones.Drilling of development wells is recommended in the eastern study area,where good trapping configuration is exhibited in addition to the presence of a potential seal(Upper Qishn Carbonates Member)and reservoir(Qishn Clastics Member)with high porosity and low water saturation.
文摘Three-dimensional geological modeling of reservoirs is an essential tool to predict reservoir performance and improve the understanding of reservoir uniqueness in Es1 formation. The paper focuses on the use of petrel software to build three-dimensional reservoir geological model which characterizes and assesses block Nv32 that located in the west of the Shenvsi oilfield in the south of Cangzhou city, Hebei province of China, and has an oil-bearing area of 1.4 km<sup>2</sup>. This study is depending on integration data from well logs of 22 wells which provided from geology, geophysics, and petrophysics to identify and provide precise depict of the subsurface internal structure and the reservoir heterogeneity. Input data was used to build the structural model, sedimentary facies model, petrophysical properties (porosity, permeability, saturation, and N/G model, and finally to determine the reservoir volume. The lithological facies were simulated using the assigned value method. Moreover, Petrophysical properties (Porosity, permeability, oil saturation and net to gross) were constructed for each zone using the Sequential Gaussian Simulation method to guide the distribution of petrophysical properties of Es1 formation, block Nv32. Statistical analysis of the porosity, permeability, oil saturation and N/G model present that the porosity occurrence distribution is mainly concern between 0.2% - 36.39% of block Nv32 with an average porosity value of 17.5%, permeability between 0.017 mD to 974.8 mD, having an average permeability of 59.44 mD, oil saturation between 0.00 to 0.95 having an average value of 0.22, and N/G is mainly concentrated between 0.01 to 1.00 within an average value of 0.61. This research has indicated the reliability of the three-dimensional model technique as a suitable tool to provide a sufficient understanding of petrophysical distribution. The south-western and north-western indicate that oilfield is very promising an exploratory well should be drilled to find out the thickness and size of the reservoir.
文摘The Goldwyer Formation of the Canning Basin has been regarded as a highly prospective shale play.This study assesses the potential prospectivity of this source rock as an unconventional hydrocarbon resource.Considering the sparsity of wells penetrating the Middle Ordovician Goldwyer across the vast underexplored area of the Canning Basin,a basin-wide study of the source rock is not warranted.Goldwyer assessment of the Barbwire Terrace,a subdivision of the Canning Basin,is carried out instead.This assessment includes the estimation of key shale play properties,such as,total organic carbon,total porosity,water saturation,and brittleness index.Each property was estimated from available well data by testing multiple estimation methods.TOC values were derived from multiple regressions of different well data.A simplified Archie's equation was used to estimate water saturation.Density porosity method was primarily used for total porosity estimations.Sonic data along with density were utilized to estimate brittleness index.Each property was then modelled across the Goldwyer Formation within the terrace.This provided geostatistical estimates on the propagation of such properties.In order to generate sweet spot maps for the Barbwire Terrace,averaged maps of different properties were combined in a weighted manner.This approach attempts to simplify the complexity of unconventional resource assessment,which therefore has provided a single product evaluating the prospectivity of the Goldwyer as a hydrocarbon resource.Results have shown that TOC and porosity are mostly the deciding factors for the prospectivity of this source rock,given that their values can be too small where the Goldwyer is deemed non-prospective.Nonetheless,sweet-spot maps show that most prospective zone is the Upper Goldwyer(Goldwyer I),followed by the upper parts of the Lower Goldwyer(Goldwyer III).More specifically,southern flanks of north-western and middle regions of the Barbwire Terrace tend to be more prospective.A stricter approach where cut-off values were applied for each property showed that sweet-spot maps are only prospective in the southern flanks of the middle Barbwire Terrace of Goldwyer I.