An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any co...An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10871156 and 11171269)the Fund of Xi'an Jiaotong University(No.2009xjtujc30)
文摘An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.