A sensitive and specific high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of metformin hydrochloride (HCI) in human plasma. The HPLC method consis...A sensitive and specific high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of metformin hydrochloride (HCI) in human plasma. The HPLC method consists of isocratic eluation with a mixture of 60% buffer (10 mM sodium dihyrogenphosphate-10 mM sodium dodecyl sulphate) and 40% acetonitrile with final pH 7.0 with flow rate of 1.0 mL/min on a Kromasil~ Akzo Nobel RP-18 (4.6 mm ID ~ 250 mm, 5 ~tm) column at an ambient temperature. Photo diode array detection was performed in program mode at 234 rim. The analyte and diazepam as internal standard (IS) were extracted from plasma using 10% trichloroacetic acid. The assay was linear over the therapeutic concentration range of 20-2,500 ng/mL for metformin HCI with correlation coefficient of r = 0.9999. Limit of quantitation was 20 ng/mL. The results obtained for intraJinter day accuracy and precision complied very well with the generally accepted criteria for bio-analytical assay. The method was applied to bioequivalence (BE) study of metformin HCI in healthy Indonesian volunteers after treatment with 750 mg XR metformin HCI. This BE study shows that the two formulations are equivalent so that they were therapeutically interchangeable for each other.展开更多
A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately...A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.展开更多
The resource optimization plays an important role in an asynchronous Phased Array Radar Network(PARN)tracking multiple targets with Measurement Origin Uncertainty(MOU),i.e.,considering the false alarms and missed dete...The resource optimization plays an important role in an asynchronous Phased Array Radar Network(PARN)tracking multiple targets with Measurement Origin Uncertainty(MOU),i.e.,considering the false alarms and missed detections.A Joint Dwell Time Allocation and Detection Threshold Optimization(JDTADTO)strategy is proposed for resource saving in this case.The Predicted Conditional Cramér-Rao Lower Bound(PC-CRLB)with Bayesian Detector and Amplitude Information(BD-AI)is derived and adopted as the tracking performance metric.The optimization model is formulated as minimizing the difference between the PC-CRLBs and the tracking precision thresholds under the constraints of upper and lower bounds of dwell time and false alarm ratio.It is shown that the objective function is nonconvex due to the Information Reduction Factor(IRF)brought by the MOU.A cyclic minimizer-based solution is proposed for problem solving.Simulation results confirm the flexibility and robustness of the JDTADTO strategy in both sufficient and insufficient resource scenarios.The results also reveal the effectiveness of the proposed strategy compared with the strategies adopting the BD without detection threshold optimization and amplitude information.展开更多
文摘A sensitive and specific high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous determination of metformin hydrochloride (HCI) in human plasma. The HPLC method consists of isocratic eluation with a mixture of 60% buffer (10 mM sodium dihyrogenphosphate-10 mM sodium dodecyl sulphate) and 40% acetonitrile with final pH 7.0 with flow rate of 1.0 mL/min on a Kromasil~ Akzo Nobel RP-18 (4.6 mm ID ~ 250 mm, 5 ~tm) column at an ambient temperature. Photo diode array detection was performed in program mode at 234 rim. The analyte and diazepam as internal standard (IS) were extracted from plasma using 10% trichloroacetic acid. The assay was linear over the therapeutic concentration range of 20-2,500 ng/mL for metformin HCI with correlation coefficient of r = 0.9999. Limit of quantitation was 20 ng/mL. The results obtained for intraJinter day accuracy and precision complied very well with the generally accepted criteria for bio-analytical assay. The method was applied to bioequivalence (BE) study of metformin HCI in healthy Indonesian volunteers after treatment with 750 mg XR metformin HCI. This BE study shows that the two formulations are equivalent so that they were therapeutically interchangeable for each other.
文摘A method termed hollow fiber liquid phase microextraction (HF-LPME) was utilized to extract three chlo- rophenols, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6- trichlorophenol (2,4,6-TCP), separately from water. The extracted chlorophenols were then separated, identified, and quantified by UV-Vis spectrophotometry with photodiode array detection (UV-Vis/DAD). In the study, experimental con-ditions such as organic phase identity, acceptor phase volume, sample agitation, extraction time, acceptor phase NaOH concentration, donor phase HCl concentration, salt addition, and UV absorption wavelength were optimized. The statistical parameters of the proposed method were investigated under the selected con-ditions. The analytical characteristics of the method such as detection limit, accuracy, precision, relative standard deviation (R.S.D.) and relative standard error (R.S.E.) was calculated. The results showed that the proposed method is simple, rapid, accurate and precise for the analysis of ternary mixtures.
基金supported by the National Natural Science Foundation of China(Nos.62001506 and 62071482).
文摘The resource optimization plays an important role in an asynchronous Phased Array Radar Network(PARN)tracking multiple targets with Measurement Origin Uncertainty(MOU),i.e.,considering the false alarms and missed detections.A Joint Dwell Time Allocation and Detection Threshold Optimization(JDTADTO)strategy is proposed for resource saving in this case.The Predicted Conditional Cramér-Rao Lower Bound(PC-CRLB)with Bayesian Detector and Amplitude Information(BD-AI)is derived and adopted as the tracking performance metric.The optimization model is formulated as minimizing the difference between the PC-CRLBs and the tracking precision thresholds under the constraints of upper and lower bounds of dwell time and false alarm ratio.It is shown that the objective function is nonconvex due to the Information Reduction Factor(IRF)brought by the MOU.A cyclic minimizer-based solution is proposed for problem solving.Simulation results confirm the flexibility and robustness of the JDTADTO strategy in both sufficient and insufficient resource scenarios.The results also reveal the effectiveness of the proposed strategy compared with the strategies adopting the BD without detection threshold optimization and amplitude information.