期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Seismic tomography of Yunnan region using short-period surface wave phase velocity 被引量:8
1
作者 HE Zhengqin(何正勤) +3 位作者 SU Wei(苏伟) YE Tai-lan(叶太兰) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期642-650,共9页
The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velo... The data of short-period (1~18 s) surface waves recorded by 23 stations belonging to the digital seismic network of Yunnan Province of China are used in this paper. From these data, the dispersion curves of phase velocities of the fundamental mode Rayleigh wave along 209 paths are determined by using the two-station narrowband filtering cross-correlation method. Adopting tomography method, the distribution maps of phase velocities at various peri-ods in Yunnan region are inverted. The maps of phase velocities on profiles along 24N, 25N, 26N, 27N and 100.5E and the distribution maps of phase velocities at 3 periods in the study region are given. The results show that the phase velocity distribution in Yunnan region has strong variations in horizontal direction, and the phase velocity distribution in short-period range is closely related to the thickness of sedimentary layers in the shallow crust. The phase velocity in southern part of the Sichuan-Yunnan rhombic block encircled by the Honghe fault and Xiaojiang fault is obviously lower than that in surrounding areas. The epicentral locations of strong earthquakes in Yunnan region are mainly distributed in transitional zones between low and high phase velocities. 展开更多
关键词 Yunnan region phase velocity of Rayleigh waves TOMOGRAPHY middle and upper crust velocity structure
下载PDF
Research on propagation properties of elastic waves in two-phase anisotropic media 被引量:1
2
作者 刘洋 李承楚 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第4期405-412,494,共9页
With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult... With the development of seismic engineering and seismic exploration of energy, the underground media that westudy are more and more complicated. Conventional anisotropy theory or two-phase isotropy theory is difficult todescribe anisotropic media containing fluid, such as fractures containing gas, shales containing water Based onBlot theory about two-phase anisotropy, with the use of elastic plane wave equations, we get Christoffel equations.We calculate and analyze the effects of frequency on phase velocity, attenuation, amplitude ratio and polarizationdirection of elastic waves of two-phase, transversely isotropic media. Results show that frequency affects slow Pwave the greatest among the four kinds of waves, i.e., fast P wave, slow P wave, fast S wave and slow S wave.Fluid phase amplitude to solid phase amplitude ratio of fast P wave, fast S wave and slow S wave approaches unitfor large dissipation coefficients. Polarization analysis shows that polarization direction of fluid phase displacement is different from, not parallel to or reverse to, that of solid phase displacement in two-phase anisotropic media. 展开更多
关键词 two-phase anisotropy elastic wave phase velocity attenuation amplitude ratio polarization
下载PDF
Critical Analysis of the Origins of Heisenberg's Uncertainty Principle
3
作者 André Michaud 《Journal of Modern Physics》 2024年第6期765-795,共31页
Analysis of the initial stages of the logical process followed by Louis de Broglie in establishing the electron phase wave equation in his 1924 thesis, which triggered the development of Wave Mechanics when Erwin Schr... Analysis of the initial stages of the logical process followed by Louis de Broglie in establishing the electron phase wave equation in his 1924 thesis, which triggered the development of Wave Mechanics when Erwin Schrödinger formalized this concept with his vectorial wave equation. This development was soon followed by Quantum Mechanics, when Schrödinger proved that the Matrix Mechanics independently developed by Werner Heisenberg was equivalent to Wave Mechanics, with both theories leaving room for some degree of uncertainty as to the physical localization of the moving electron. This is what led Heisenberg to also formalize the Uncertainty Principle to take this situation into account. This principle was soon regarded as a fundamental axiomatic principle that seemed to make further exploration of the subatomic level of magnitude appear impossible to most researchers. We will analyze in this article the reason why the phase-wave velocity established by de Broglie generated this uncertainty in the localization of the moving electron in light of the current state of knowledge on the behavior of the electron in motion, in view of establishing the relevance of maintaining the Uncertainty Principle in the study of the subatomic level of magnitude. 展开更多
关键词 phase wave velocity wave Mechanics Matrix Mechanics Quantum Mechanics Uncertainty Principle
下载PDF
Review on second-harmonic generation of ultrasonic guided waves in solid media(Ⅰ): Theoretical analyses 被引量:1
4
作者 李卫彬 邓明晰 项延训 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期51-65,共15页
Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for ev... Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for evaluating and characterizing the hidden and/or inaccessible damage/degradation in solid media. Increasing attention on the development of the testing method based on nonlinear ultrasonic guided waves is largely attributed to the theoretical advances of nonlinear guided waves propagation in solid media. One of the typical acoustic nonlinear responses is the generation of second harmonics that can be used to effectively evaluate damage/degradation in materials/structures. In this paper, the theoretical progress of second-harmonic generation(SHG) of ultrasonic guided wave propagation in solid media is reviewed. The advances and developments of theoretical investigations on the effect of SHG of ultrasonic guided wave propagation in different structures are addressed. Some obscure understandings and the ideas in dispute are also discussed. 展开更多
关键词 second-harmonic generation(SHG) ultrasonic guided waves cumulative growth effect phase and group velocity matching
下载PDF
Lateral-field-excitation properties of LiNbO_3 single crystal
5
作者 王文炎 张超 +2 位作者 张志甜 刘岩 冯冠平 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期795-802,共8页
LiNbO3 has been found attractive for lateral field excitation (LFE) applications due to its high piezoelectric coupling. In this paper, bulk acoustic wave propagation properties for LiNbO3 single crystal excited by ... LiNbO3 has been found attractive for lateral field excitation (LFE) applications due to its high piezoelectric coupling. In this paper, bulk acoustic wave propagation properties for LiNbO3 single crystal excited by a lateral electric field have been investigated using the extended Christoffel Bechmann method. It is found that the LFE piezoelectric coupling factor for c mode reaches its maximum value of 95.46% when ψ = 0° for both (yxl)-58° and (yxwl)±60°/58° LiNbO3. The acoustic wave phase velocity of c mode TSM (thickness shear mode) changes from 3456 m/s to 3983 m/s as a function of ψ. Here ψ represents the angle between the lateral electric field and the crystallographic X-axis in the substrate major surface. A 5 MHz LFE device of (yxl)-58° LiNbO3 with ψ = 0° was designed and tested in air. A major resonance peak was observed with the motional resistance as low as 17 Ω and the Q-factor value up to 10353. The test result is well in agreement with the theoretical analysis, and suggests that the LFE LiNbO3 device can be a good platform for high performance resonator or sensor applications. 展开更多
关键词 lateral-field-excitation LINBO3 piezoelectric coupling factor acoustic wave phase velocity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部