The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of tr...The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).展开更多
Finding binary sequences with Large SHG ratios is very important in the field of ultrafast science, biomedical optics, high-resolution microscopy and label-free imaging. In this paper, we have demonstrated the relatio...Finding binary sequences with Large SHG ratios is very important in the field of ultrafast science, biomedical optics, high-resolution microscopy and label-free imaging. In this paper, we have demonstrated the relation between the SHG contrast ratio and the traditional Merit Factor values. And in the light from known results in Merit Factor Problems, we have shown that Legendre Sequences or Jacobi Sequences, are still the best candidates to obtain binary sequences with large SHG contrast ratios. The authors also discussed the SHG behaviors on some sequences obtained from cyclotomic classes over the finite field GF (2l) .展开更多
Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied...Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied and discussed.In this paper,the corresponding imaging fringe formula of the three-phase grating interferometer is provided.At the same time,the similarities and differences between the three-phase grating interferometer and the dual-phase grating interferometer are investigated and verified,and that the three-phase grating interferometer can produce large-period moiréfringes without using the analyzing grating is demonstrated experimentally.Finally,a simple method of designing three-phase grating and multi-grating imaging systems from geometric optics based on the thin-lens theory of gratings is presented.These theoretical formulas and experimental results provide optimization tools for designing three-phase grating interferometer systems.展开更多
An x-ray scintillator screen with a special structure, functioning as detector and analyser grating, was proposed for collecting the interferogram of differential phase contrast imaging without absorption grating and ...An x-ray scintillator screen with a special structure, functioning as detector and analyser grating, was proposed for collecting the interferogram of differential phase contrast imaging without absorption grating and difficulty of fabrication by a state of the art technique. On the basis of phase grating diffraction, a detecting model of the scintillator screen was built for analysing the phase and absorption information of objects. According to the analysis, a new method of phase retrievals based on two-images and the optimal structure of screen were presented.展开更多
A CO2 laser-based phase contrast imaging(PCI) diagnostic has been developed on HL-2A tokamak.It can detect line integrated plasma density fluctuations by measuring the phase shift of laser beam after being scattered b...A CO2 laser-based phase contrast imaging(PCI) diagnostic has been developed on HL-2A tokamak.It can detect line integrated plasma density fluctuations by measuring the phase shift of laser beam after being scattered by the bulk plasma.The diagnosed radial region ranges from ρ≡r/a =0.625 to 0.7.32-channel HgCdTe detectors with alternative-current biased amplifiers are arranged in line at the imaging plane of the optical path.This PCI is able to diagnose density fluctuations with wavenumbers ranging from 2 to 15 cm-1 and the time resolution is better than 2 μs.The first experimental data were achieved in 2018 spring campaign of HL-2A tokamak.High performance is confirmed in different discharging configurations and makes it a keen tool in broadband turbulence investigations.展开更多
Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refr...Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.展开更多
A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the ...A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.展开更多
X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam,...X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam, mechanical and background vibration, the actual accuracy will inevitably be degraded by these time-dependent fluctuations. Therefore,not only spatial position, but also temporal features of the speckle patterns need to be considered in order to maintain the superiority of the speckle-based methods. In this paper, we propose a parallel acquisition method with advantages of real time and high accuracy, which has potential applicability to dynamic samples imaging as well as on-line beam monitoring.Through simulations, we demonstrate that the proposed method can reduce the phase error caused by the fluctuations to1% at most compared with current speckle tracking methods. Meanwhile, it can keep the accuracy deterioration within0.03 nrad, making the high theoretical accuracy a reality. Also, we find that waveforms of the incident beam have a little impact on the phase retrieved and will not influence the actual accuracy, which relaxes the requirements for speckle-based experiments.展开更多
This paper gives theoretical analysis of visibility of fringes, which is influenced by distances, temporal and spatial coherence of source, in hard x-ray differential phase-contrast imaging with microfocus x-ray sourc...This paper gives theoretical analysis of visibility of fringes, which is influenced by distances, temporal and spatial coherence of source, in hard x-ray differential phase-contrast imaging with microfocus x-ray source. According to the character of longitudinal periodicity of the interferogram, the setup is insensitive to mechanical drift and vibrations. The effect of temporal coherence of x-ray source is investigated and its related bandwidth is derived. Based on the theory of partially coherent light, it shows that the requirement for the spatial coherence of x-ray source is not strict and can be met by the general microfocus x-ray tube for x-ray differential phase-contrast imaging.展开更多
Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors.Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method.V...Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors.Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method.Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility.Barium sulfate and physiological saline were used as contrast agents for the blood vessels.Blood vessels of <Φ20μm could be detected by replacing resident blood with physiological saline or barium sulfate.An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image.It is demonstrated that selective angiography based on phase contrast X-ray imaging,with a physiological material of low Z elements (such as saline) being the contrast agent,is a viable imaging strategy.Further efforts will be focused on using the technique to image tumor angiogenesis.展开更多
An experimental study on nondestructive X-ray imaging of inner structure of soft tissues in phase con-trast has been conducted with Beijing Synchrotron Radiation Facility (BSRF). Modification to the beamline setupwas ...An experimental study on nondestructive X-ray imaging of inner structure of soft tissues in phase con-trast has been conducted with Beijing Synchrotron Radiation Facility (BSRF). Modification to the beamline setupwas made to enlarge the X-ray beam section and consequently larger samples could be imaged. In-line setup was em-ployed for experiments. Results on a series of samples were given and soft-tissue details of less than 50 μm inside afresh goldfish were obtained. Diagnosis of tumor in its early stage was also investigated taking SD rats as the model.Tumor at the size of ~ 100μm was observed. Potential of this technique in clinic diagnosis was discussed.展开更多
We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microsco...We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.展开更多
In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, r...In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, ring artifacts which will reduce the image quality are commonly encountered in IL-PC-CT, and numerous correction methods exist to either pre-process the sinogram or post-process the reconstructed image. In this study, we develop an IL-PC-CT reconstruction method based on anisotropic total variation(TV) minimization. Using this method, the ring artifacts are corrected during the reconstruction process. This method is compared with two methods: a sinogram preprocessing correction technique based on wavelet-FFT filter and a reconstruction method based on isotropic TV. The correction results show that the proposed method can reduce visible ring artifacts while preserving the liver section details for real liver section synchrotron data.展开更多
With the spatial coherence of X-rays and high flux and brightness of the 3rd generation synchrotron radiation facility,X-ray phase contrast microscopy(XPCM)at Shanghai Synchrotron Radiation Facility(SSRF)can provide h...With the spatial coherence of X-rays and high flux and brightness of the 3rd generation synchrotron radiation facility,X-ray phase contrast microscopy(XPCM)at Shanghai Synchrotron Radiation Facility(SSRF)can provide high resolution dynamic imaging of low electron density materials in principle.In this paper,we investigated the cavitation and water-refilling processes in rice and bamboo leaves utilizing XPCM at SSRF.The occurrence of xylem cavitation was recorded in vivo.The study also revealed that under different dehydration conditions,cavitation occurs in different degrees,and therefore,the refilling process is different.The results demonstrate that SSRF can provide high enough fluxes to study dynamic processes in plants in real-time,and XPCM is expected to be a promising method to reveal the mechanisms of cavitation and its repair in plants nondestructively.展开更多
For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain inf...For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain information on the x- ray's phase shift. Four kinds of approaches to the relationship between intensity distribution and phase shift axe reviewed and discussed. A micro-focal x-ray source with high geometrical magnification is used to acquire phase contrast images. A great improvement on image quality is shown and geometrical parameters axe modified for comparison between different imaging positions.展开更多
A new algorithm for phase contrast X-ray tomography under holographic measurement was proposed in this paper. The main idea of the algorithm was to solve the nonlinear phase retrieval problem using the Newton iterativ...A new algorithm for phase contrast X-ray tomography under holographic measurement was proposed in this paper. The main idea of the algorithm was to solve the nonlinear phase retrieval problem using the Newton iterative method. The linear equations for the Newton directions were proved to be ill-posed and the regularized solutions were obtained by the conjugate gradient method. Some numerical experiments with computer simulated data were presented. The efficiency, feasibility and the numerical stability of the algorithm were illustrated by the numerical experiments. Compared with the results produced by the linearized phase retrieval algorithm, we can see that the new algorithm is not limited to be only efficient for the data measured in the near-field of the Fresnel region and thus it has a broader validity range.展开更多
X-ray grating interferometer has attracted widely attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the widely used phase stepping informa...X-ray grating interferometer has attracted widely attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the widely used phase stepping information extraction method reduces system stability and prolongs data acquisition time by several times compared with conventional x-ray absorption- based imaging. The mechanical stepping can be avoided by using a staggered grating, but at the cost of low vertical spatial resolution. In this paper, employing a modified staggered grating and the angular signal radiography, we proposed a single-shot grating-based x-ray differential phase contrast imaging with decent vertical spatial resolution. The theoretical framework was deduced and proved by numerical experiments. Absorption, phase, and scattering computed tomography can be performed without phase stepping. Therefore, we believe this fast and highly stable imaging method with decent resolution would be widely applied in x-ray grating-based phase contrast imaging.展开更多
In-line x-ray phase contrast imaging has attracted much attention due to two major advantages: its effectiveness in imaging weakly absorbing materials, and the simplicity of its facilities. In this paper a comprehens...In-line x-ray phase contrast imaging has attracted much attention due to two major advantages: its effectiveness in imaging weakly absorbing materials, and the simplicity of its facilities. In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med. Phys. 31 2378-2384 (2004)] is reviewed. The influence of x-ray source and detector on the image is discussed. Experiments using a microfocus x-ray source and a CCD detector are conducted, which show the role of two key factors on imaging: the tube voltage and tube current. High tube current and moderate tube voltage are suggested for imaging.展开更多
A fast and simple method to extract phase-contrast images from interferograms is proposed, and its effectiveness is demonstrated through simulation and experiment. For x-ray differential phase contrast imaging, a stro...A fast and simple method to extract phase-contrast images from interferograms is proposed, and its effectiveness is demonstrated through simulation and experiment. For x-ray differential phase contrast imaging, a strong attenuation signal acts as an overwhelming background intensity that obscures the weak phase signal so that no obvious phase-gradient information is detectable in the raw image. By subtracting one interferogram from another, chosen at particular intervals,the phase signal can be isolated and magnified.展开更多
A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patte...A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making highdensity detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.展开更多
基金supported by the National Key Research and Development Program of China(Nos.2019YFE03090100 and 2022YFE03100002)National Natural Science Foundation of China(No.12075241)。
文摘The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).
文摘Finding binary sequences with Large SHG ratios is very important in the field of ultrafast science, biomedical optics, high-resolution microscopy and label-free imaging. In this paper, we have demonstrated the relation between the SHG contrast ratio and the traditional Merit Factor values. And in the light from known results in Merit Factor Problems, we have shown that Legendre Sequences or Jacobi Sequences, are still the best candidates to obtain binary sequences with large SHG contrast ratios. The authors also discussed the SHG behaviors on some sequences obtained from cyclotomic classes over the finite field GF (2l) .
基金Project supported by LingChuang Research Project of China National Nuclear Corporationthe National Natural Science Foundation of China(Grant No.12027812)。
文摘Dual-phase and three-phase grating x-ray interference is a promising new technique for grating-based x-ray differential phase contrast imaging.Dual-phase grating interferometers have been relatively completely studied and discussed.In this paper,the corresponding imaging fringe formula of the three-phase grating interferometer is provided.At the same time,the similarities and differences between the three-phase grating interferometer and the dual-phase grating interferometer are investigated and verified,and that the three-phase grating interferometer can produce large-period moiréfringes without using the analyzing grating is demonstrated experimentally.Finally,a simple method of designing three-phase grating and multi-grating imaging systems from geometric optics based on the thin-lens theory of gratings is presented.These theoretical formulas and experimental results provide optimization tools for designing three-phase grating interferometer systems.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60232090 and 10774102)the Science & Technology Project from Shenzhen Government of China (Grant Nos. 2008340 and 200717)
文摘An x-ray scintillator screen with a special structure, functioning as detector and analyser grating, was proposed for collecting the interferogram of differential phase contrast imaging without absorption grating and difficulty of fabrication by a state of the art technique. On the basis of phase grating diffraction, a detecting model of the scintillator screen was built for analysing the phase and absorption information of objects. According to the analysis, a new method of phase retrievals based on two-images and the optimal structure of screen were presented.
基金supported by the National Key Research and Development Program of China (No.2017YFE0300405)National Natural Science Foundation of China (Nos.11875124, 11705052, 11575055 and 11611130164)the National Magnetic Confinement Fusion Science Program of China (No.2015GB120002)
文摘A CO2 laser-based phase contrast imaging(PCI) diagnostic has been developed on HL-2A tokamak.It can detect line integrated plasma density fluctuations by measuring the phase shift of laser beam after being scattered by the bulk plasma.The diagnosed radial region ranges from ρ≡r/a =0.625 to 0.7.32-channel HgCdTe detectors with alternative-current biased amplifiers are arranged in line at the imaging plane of the optical path.This PCI is able to diagnose density fluctuations with wavenumbers ranging from 2 to 15 cm-1 and the time resolution is better than 2 μs.The first experimental data were achieved in 2018 spring campaign of HL-2A tokamak.High performance is confirmed in different discharging configurations and makes it a keen tool in broadband turbulence investigations.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KJCX2-YW-N42)the Key Project of the National Natural Science Foundation of China (Grant No.10734070)+3 种基金the National Natural Science Foundation of China (Grant No.11205157)the National Basic Research Program of China (Grant Nos. 2009CB930804 and 2012CB825800)the Fundamental Research Funds for the Central Universities,China (Grant No. WK2310000021)the China Postdoctoral Science Foundation (Grant No. 2011M501064)
文摘Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.
基金Project(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(50275150) supported by the National Natural Science Foundation of China
文摘A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11675253 and 11505278)。
文摘X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam, mechanical and background vibration, the actual accuracy will inevitably be degraded by these time-dependent fluctuations. Therefore,not only spatial position, but also temporal features of the speckle patterns need to be considered in order to maintain the superiority of the speckle-based methods. In this paper, we propose a parallel acquisition method with advantages of real time and high accuracy, which has potential applicability to dynamic samples imaging as well as on-line beam monitoring.Through simulations, we demonstrate that the proposed method can reduce the phase error caused by the fluctuations to1% at most compared with current speckle tracking methods. Meanwhile, it can keep the accuracy deterioration within0.03 nrad, making the high theoretical accuracy a reality. Also, we find that waveforms of the incident beam have a little impact on the phase retrieved and will not influence the actual accuracy, which relaxes the requirements for speckle-based experiments.
文摘This paper gives theoretical analysis of visibility of fringes, which is influenced by distances, temporal and spatial coherence of source, in hard x-ray differential phase-contrast imaging with microfocus x-ray source. According to the character of longitudinal periodicity of the interferogram, the setup is insensitive to mechanical drift and vibrations. The effect of temporal coherence of x-ray source is investigated and its related bandwidth is derived. Based on the theory of partially coherent light, it shows that the requirement for the spatial coherence of x-ray source is not strict and can be met by the general microfocus x-ray tube for x-ray differential phase-contrast imaging.
基金Supported by National Basic Research Program of China (973 Program Grant No.2010CB834305)
文摘Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors.Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method.Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility.Barium sulfate and physiological saline were used as contrast agents for the blood vessels.Blood vessels of <Φ20μm could be detected by replacing resident blood with physiological saline or barium sulfate.An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image.It is demonstrated that selective angiography based on phase contrast X-ray imaging,with a physiological material of low Z elements (such as saline) being the contrast agent,is a viable imaging strategy.Further efforts will be focused on using the technique to image tumor angiogenesis.
基金National Natural Science Foundation of China(No.10275087)Shanghai Foundation on Development of Science and Technology(No.022261023) Shanghai Foundation for Natural Science(No.02ZF14116)
文摘An experimental study on nondestructive X-ray imaging of inner structure of soft tissues in phase con-trast has been conducted with Beijing Synchrotron Radiation Facility (BSRF). Modification to the beamline setupwas made to enlarge the X-ray beam section and consequently larger samples could be imaged. In-line setup was em-ployed for experiments. Results on a series of samples were given and soft-tissue details of less than 50 μm inside afresh goldfish were obtained. Diagnosis of tumor in its early stage was also investigated taking SD rats as the model.Tumor at the size of ~ 100μm was observed. Potential of this technique in clinic diagnosis was discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174019,61322509 and 11121091the National Basic Research Program of China under Grant No 2013CB921904
文摘We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.61671004,61271012,81371549,81671683,and 11501415)the Natural Science Foundation of Tianjin City,China(Grant No.16JCYBJC28600)+4 种基金the WBE Liver Fibrosis Foundation of China(Grant No.CFHPC20131033)the Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YZ201410)the Foundation of Tianjin University of Technology and Education(Grant Nos.KJ11-22 and J10011060321)SRF for ROCS,SEMthe IHEP-CAS Scientific Research Foundation(Grant No.2013IHEPYJRC801)
文摘In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, ring artifacts which will reduce the image quality are commonly encountered in IL-PC-CT, and numerous correction methods exist to either pre-process the sinogram or post-process the reconstructed image. In this study, we develop an IL-PC-CT reconstruction method based on anisotropic total variation(TV) minimization. Using this method, the ring artifacts are corrected during the reconstruction process. This method is compared with two methods: a sinogram preprocessing correction technique based on wavelet-FFT filter and a reconstruction method based on isotropic TV. The correction results show that the proposed method can reduce visible ring artifacts while preserving the liver section details for real liver section synchrotron data.
基金Supported by the National Natural Science Foundation of China(No.11105213)the State Key Development Program for Basic Research of China(No.2010CB834301)+1 种基金the External Cooperation Program of the Chinese Academy of Sciences(No.GJHZ09058)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘With the spatial coherence of X-rays and high flux and brightness of the 3rd generation synchrotron radiation facility,X-ray phase contrast microscopy(XPCM)at Shanghai Synchrotron Radiation Facility(SSRF)can provide high resolution dynamic imaging of low electron density materials in principle.In this paper,we investigated the cavitation and water-refilling processes in rice and bamboo leaves utilizing XPCM at SSRF.The occurrence of xylem cavitation was recorded in vivo.The study also revealed that under different dehydration conditions,cavitation occurs in different degrees,and therefore,the refilling process is different.The results demonstrate that SSRF can provide high enough fluxes to study dynamic processes in plants in real-time,and XPCM is expected to be a promising method to reveal the mechanisms of cavitation and its repair in plants nondestructively.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475044).
文摘For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain information on the x- ray's phase shift. Four kinds of approaches to the relationship between intensity distribution and phase shift axe reviewed and discussed. A micro-focal x-ray source with high geometrical magnification is used to acquire phase contrast images. A great improvement on image quality is shown and geometrical parameters axe modified for comparison between different imaging positions.
基金Project supported by the National Basic Research P.rogram of China (No.2003CB716101)the National Natural Science Foundation of China (No.60532080)+1 种基金the Science Foundation of Chinese Ministry of Education(No.306017)the Science Foundation of Engineering Research Institute of Peking University,and the Science Foundation of Microsoft Research of Asia.
文摘A new algorithm for phase contrast X-ray tomography under holographic measurement was proposed in this paper. The main idea of the algorithm was to solve the nonlinear phase retrieval problem using the Newton iterative method. The linear equations for the Newton directions were proved to be ill-posed and the regularized solutions were obtained by the conjugate gradient method. Some numerical experiments with computer simulated data were presented. The efficiency, feasibility and the numerical stability of the algorithm were illustrated by the numerical experiments. Compared with the results produced by the linearized phase retrieval algorithm, we can see that the new algorithm is not limited to be only efficient for the data measured in the near-field of the Fresnel region and thus it has a broader validity range.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275204,11475175,and 11405175)the China Postdoctoral Science Foundation(Grant No.2017M612097)the Fundamental Research Funds for the Central Universities(Grant No.WK2310000065)
文摘X-ray grating interferometer has attracted widely attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the widely used phase stepping information extraction method reduces system stability and prolongs data acquisition time by several times compared with conventional x-ray absorption- based imaging. The mechanical stepping can be avoided by using a staggered grating, but at the cost of low vertical spatial resolution. In this paper, employing a modified staggered grating and the angular signal radiography, we proposed a single-shot grating-based x-ray differential phase contrast imaging with decent vertical spatial resolution. The theoretical framework was deduced and proved by numerical experiments. Absorption, phase, and scattering computed tomography can be performed without phase stepping. Therefore, we believe this fast and highly stable imaging method with decent resolution would be widely applied in x-ray grating-based phase contrast imaging.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475044).
文摘In-line x-ray phase contrast imaging has attracted much attention due to two major advantages: its effectiveness in imaging weakly absorbing materials, and the simplicity of its facilities. In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med. Phys. 31 2378-2384 (2004)] is reviewed. The influence of x-ray source and detector on the image is discussed. Experiments using a microfocus x-ray source and a CCD detector are conducted, which show the role of two key factors on imaging: the tube voltage and tube current. High tube current and moderate tube voltage are suggested for imaging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61101175,61571305,and 61227802)
文摘A fast and simple method to extract phase-contrast images from interferograms is proposed, and its effectiveness is demonstrated through simulation and experiment. For x-ray differential phase contrast imaging, a strong attenuation signal acts as an overwhelming background intensity that obscures the weak phase signal so that no obvious phase-gradient information is detectable in the raw image. By subtracting one interferogram from another, chosen at particular intervals,the phase signal can be isolated and magnified.
文摘A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making highdensity detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.