期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Study of the Liquid Phase Volume Expansion for CO_2/Organic Solvent Systems 被引量:1
1
作者 LI Zhiyi(李志义) +7 位作者 XIA Yuanjing(夏远景) LIU Xuewu(刘学武) DENG Xiaoliang(邓小亮) Hu Dapeng(胡大鹏) 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第4期504-509,共6页
The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relations... The supercritical antisolvent (SAS) process has been developed in recent years for the tormation of nanoand micro-particles. It is necessary to study the liquid phase volume expansion (LPVE) and find the relationships between the operating conditions and the LPVE in order to develop a practical method for determining the operation conditions and selecting an organic solvent for SAS process. The PR equation of state with vdW-1 mixing rule is used to calculate the LPVE for CO2/toluene, CO2/acetone and CO2/ethyl acetate systems, and the results show that the LPVE for each CO2/organic solvent system decreases as the temperature increases. The relationship between the LPVE and the solubility of CO2 in the liquid phase for CO2/organic solvent systems is investigated, and the results show that the LPVE is determined directly by the solubility of CO2 in the liquid phase, xCO2, and can be related to xCO2 independently. No matter what system of CO2/organic solvent is and how different the temperature is, the LPVEs have little difference as long as the solubility of CO2 in the liquid phase, xCO2, keeps constant. The lower temperature is always favorable to the SAS process. The higher the solubility of CO2 in an organic solvent under certain operation condition, the more suitable it is to the SAS process. 展开更多
关键词 supercritical antisolvent process liquid phase volume expansion carbon dioxide organic solvent
下载PDF
Phase Transition and Negative Thermal Expansion Property of ZrMnMo_3O_(12)
2
作者 葛向红 毛彦超 +6 位作者 李林 李丽平 袁娜 程永光 郭娟 晁明举 梁二军 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期104-107,共4页
A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and ... A novel material of ZrMnMo3012 with negative thermal expansion is presented. The phase transition temperature and coemcient of thermal expansion (CTE) are investigated by temperature-dependent x-ray diffraction and Raman spectra. It is shown that ZrMnMo3012 adopts monoclinic structure with space group P21/a (No. 14) from 298 to 358K and transforms to orthorhombic with space group Pnma (No. 62) above 363K. The linear CTE obtained from the results of XRD refinement is -2.80 × 10-6 K-1 from 363 to 873 K. The CTE of the bulk cylinder ceramic measured by a thermal dilatometer is -4.7× 10-6 K-1 from 373 to 773K approximatively. 展开更多
关键词 of ZR in IT on as MO phase Transition and Negative Thermal expansion Property of ZrMnMo3O XRD CTE
下载PDF
Simulation of Fast Gas Injection Expansion Phase Experiments under Different Pressures
3
作者 Donella Pellini Wemer Maschek +2 位作者 Nicola Forgione Francesco Poli Francesco Oriolo 《Journal of Energy and Power Engineering》 2012年第1期1-11,共11页
The injection of a high pressure gas into a stagnant liquid pool is the characteristic phenomenon during the expansion phase of a hypothetical core disruptive accident in liquid metal cooled fast reactors. In order to... The injection of a high pressure gas into a stagnant liquid pool is the characteristic phenomenon during the expansion phase of a hypothetical core disruptive accident in liquid metal cooled fast reactors. In order to investigate lots of mechanisms involved in this phase of the accident's evolution, an experimental campaign called S GI was performed in 1994 in Forschungszentrum Karlsruhe, now KIT. This campaign consists of nine experiments which have been dedicated to assess the effects of different pressure injection, the nozzle's size and the presence of inner confinement in the formation of the rising bubble. Three of these experiments, which were focused on the pressure effects, have now been simulated with SIMMER III code and with FLUENT 6.3, a commercial CFD code. Both codes, despite their different features, have showed a good agreement with the experimental results. In particular, time trend evolutions of pressures and bubble volumes have been well reproduced by simulation. Furthermore, both codes agree on the shape of the bubble, even though they have evidenced same discrepancies with the experimental shape. 展开更多
关键词 expansion phase SIMMER III code FLUENT.
下载PDF
First-Principles Study of the High-Temperature Behaviors of the Willemite-Ⅱ and Post-Phenacite Phases of Silicon Nitride 被引量:1
4
作者 陈东 cang yuping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第1期74-79,共6页
The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ-... The structural and elastic properties of the recently-discovered wⅡ- and δ-Si3N4 are investigated through the plane-wave pseudo-potential method within ultrasoft pseudopotentials.The elastic constants show that wⅡ- and δ-Si3N4 are mechanically stable in the pressure ranges of 0-50 GPa and 40-50 GPa,respectively.The α→wⅡ phase transition can be observed at 18.6 GPa and 300 K.The β→δ phase transformation occurs at pressures of 29.6,32.1,35.9,39.6,41.8,and 44.1 GPa when the temperatures are100,200,300,400,500,and 600 K,respectively.The results show that the interactions among the N-2s,Si-3s,3p bands(lower valence band) and the Si-3p,N-2p bands(upper valence band) play an important role in the stabilities of the wⅡ and S phases.Moreover,several thermodynamic parameters(thermal expansion,free energy,bulk modulus and heat capacity) of δ-Si3N4 are also obtained.Some interesting features are found in these properties.δ-Si3N4 is predicted to be a negative thermal expansion material.The adiabatic bulk modulus decreases with applied pressure,but a majority of materials show the opposite trend.Further experimental investigations with higher precisions may be required to determine the fundamental properties of wⅡ- andδ-Si3N4. 展开更多
关键词 density functional theory phase boundary density of states thermal expansion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部