期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Physical Mechanism of Phased Variation of 2020 Extremely Heavy Meiyu in Middle and Lower Reaches of Yangtze River 被引量:1
1
作者 鲍媛媛 刘华 蔡芗宁 《Journal of Tropical Meteorology》 SCIE 2022年第3期273-285,共13页
The extremely heavy Meiyu in the middle and lower reaches of the Yangtze River in 2020 features early beginning,extremely late retreat,long duration,and a dramatic north-south swing rain belt.It can be divided into th... The extremely heavy Meiyu in the middle and lower reaches of the Yangtze River in 2020 features early beginning,extremely late retreat,long duration,and a dramatic north-south swing rain belt.It can be divided into three phases.The key point of the extremely heavy Meiyu is the long duration of precipitation.The physical mechanism of the phased variation is researched here by analyzing the phased evolution of atmospheric circulation,the thermal effect of Tibetan Plateau,the sea surface temperature anomalies(SSTA),and tropical convection.The results show that:(1)Throughout the whole Meiyu season,the western Pacific subtropical high(WPSH)is stronger and westward,the South Asian high(SAH)is stronger and eastward,and blocking highs are very active with different patterns at different stages;they all form flat mid-latitude westerlies with fluctuation interacting with WPSH and SAH,causing their ridges and the rain belt to swing drastically from north to south or vice versa.(2)The higher temperatures in the upper and middle atmosphere in the eastern and southern Tibetan Plateau and the middle and lower reaches of the Yangtze River,which are produced by the warm advection transport,the heat sources in Tibetan Plateau,and the latent heat of condensation of Meiyu,contribute greatly to the stronger and westward WPSH and the stronger and eastward SAH.The dry-cold air brought by the fluctuating westerlies converges with the warm-humid air over Tibetan Plateau,resulting in precipitation,which in turn enhances the heat source of Tibetan Plateau and regulates the swings of WPSH and SAH.(3)Different from climatological analysis,real-time SSTA in the Indian Ocean has no obviously direct effect on WPSH and Meiyu.The anomalous distribution and phased evolution process of real-time SSTA in South China Sea and the tropical western Pacific affect WPSH and Meiyu significantly through tropical convection and heat sources.The maintenance of strong positive SSTA in the western equatorial Pacific is a critical reason for the prolonged Meiyu season.Both the onset and the retreat of Meiyu in 2020 are closely related to the intensified positive SSTA and corresponding typhoons on the ocean east of the Philippines. 展开更多
关键词 phased variation of Meiyu blocking high WPSH real-time SSTA
下载PDF
Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback
2
作者 牛海莎 祝连庆 宋建军 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期43-47,共5页
The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and ... The laser output characteristics under elliptically polarized optical feedback effect are studied. Elliptically polarized light is generated by wave plate placed in the feedback cavity. By analyzing the amplitude and phase of the laser output in the orthogonal direction, some new phenomena are firstly discovered and explained theoretically.Elliptically polarized feedback light is amplified in the gain medium in the resonator, and the direction perpendicular to the original polarization direction is easiest to oscillate. The laser intensity variation in amplitude and phase are related to the amplified mode and the anisotropy of external cavity. The theoretical analysis and experimental results agree well. Because the output characteristic of the laser has a relationship with the anisotropy of the external cavity, the phenomenon also provides a method for measuring birefringence. 展开更多
关键词 Laser Intensity variation in Amplitude and phase Induced by Elliptically Polarized Feedback
下载PDF
Tests of relative vertical offsets for several types of GPS receiver antenna phase centers 被引量:2
3
作者 Hao Ming Qin Shanlan +2 位作者 Wang Qingliang Wang Jianhua Zhou Lin 《Geodesy and Geodynamics》 2015年第5期392-395,共4页
The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS result... The correction for antenna phase center is considered in processing Global Positioning System (GPS) data collected from a network of GPS ultra-short baselines. Compared with the leveling measurements, the GPS results show that the relative vertical offsets for the pairs of GPS receiver antenna phase centers still exist, although absolute calibration of the antenna phase center variations (PCVs) has been considered. With respect to the TPS CR.G3 antenna, the relative vertical offset for the LEI AT504 antenna is 8.4 mm, the offset for the ASH701945C_M antenna is 5.5 mm, and those for the ASHY00936E_C and ASH701945B_M antennas are approximately between 2 mm and -3 mm. The relative offsets for the same type of antennas are approximately 1 mm. By correcting the absolute PCVs, the existing relative offset becomes negligible for horizontal positioning. 展开更多
关键词 Global Positioning System (GPS) Antenna phase center phase center variation Vertical offsets Horizontal offset Leveling Crustal movement Vertical velocity
下载PDF
Decadal and Interannual Variability of the Indian Ocean Dipole 被引量:1
4
作者 袁媛 陈仲良 +1 位作者 周文 李崇银 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期856-866,共11页
This study investigates the decadal and interannual variability of the Indian Ocean Dipole (IOD). It is found that the long-term IOD index displays a decadal phase variation. Prior to 1920 negative phase dominates b... This study investigates the decadal and interannual variability of the Indian Ocean Dipole (IOD). It is found that the long-term IOD index displays a decadal phase variation. Prior to 1920 negative phase dominates but after 1960 positive phase prevails. Under the warming background of the tropical ocean, a larger warming trend in the western Indian Ocean is responsible for the decadal phase variation of the IOD mode. Due to reduced latent heat loss from the local ocean, the western Indian Ocean warming may be caused by the weakened Indian Ocean westerly summer monsoon. The interannual air-sea coupled IOD mode varies on the background of its decadal variability. During the earlier period (1948-1969), IOD events are characterized by opposing SST anomaly (SSTA) in the western and eastern Indian Ocean, with a single vertical circulation above the equatorial Indian Ocean. But in the later period (1980-2003), with positive IOD dominating, most IOD events have a zonal gradient perturbation on a uniform positive SSTA. However, there are three exceptionally strong positive IOD events (1982, 1994, and 1997), with opposite SSTA in the western and eastern Indian Ocean, accompanied by an El Nifio event. Consequently, two anomalous reversed Walker cells are located separately over the Indian Ocean and western-eastern Pacific; the one over the Indian Ocean is much stronger than that during other positive IOD events. 展开更多
关键词 Indian Ocean dipole ENSO decadal phase variation interannual variability
下载PDF
Spaceborne GPS receiver antenna phase center offset and variation estimation for the Shiyan 3 satellite 被引量:11
5
作者 Gu Defeng Lai Yuwang +2 位作者 Liu Junhong Ju Bing Tu Jia 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1335-1344,共10页
In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a maj... In determining the orbits of low Earth orbit (LEO) satellites using spaceborne GPS, the errors caused by receiver antenna phase center offset (PCO) and phase center variations (PCVs) are gradually becoming a major limiting factor for continued improvements to accuracy. Shiyan 3, a small satellite mission for space technology experimentation and climate exploration, was developed by China and launched on November 5, 2008. The dual-frequency GPS receiver payload delivers 1 Hz data and provides the basis for precise orbit determination within the range of a few centimeters. The antenna PCO and PCV error characteristics and the principles influencing orbit determination are analyzed. The feasibility of PCO and PCV estimation and compensation in different directions is demonstrated through simulation and in-flight tests. The values of receiver antenna PCO and PCVs for Gravity Recovery and Climate Experiment (GRACE) and Shiyan 3 satellites are estimated from one month of data. A large and stable antenna PCO error, reaching up to 10.34 cm in the z-direction, is found with the Shiyan 3 satellite. The PCVs on the Shiyan 3 satellite are estimated and reach up to 3.0 cm, which is slightly larger than that of GRACE satellites. Orbit validation clearly improved with independent k-band ranging (KBR) and satellite laser ranging (SLR) measurements. For GRACE satellites, the average root mean square (RMS) of KBR residuals improved from 1.01 cm to 0.88 cm. For the Shiyan 3 satellite, the average RMS of SLR residuals improved from 4.95 cm to 4.06 cm. 展开更多
关键词 GRACE phase center offset phase center variations Shiyan 3 Spaceborne GPS
原文传递
Enhanced baseline determination for formation flying LEOs by relative corrections of phase center and code residual variations 被引量:1
6
作者 Bin YI Defeng GU +2 位作者 Bing JU Kai SHAO Houzhe ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期185-194,共10页
Formation flying Low Earth Orbiters(LEOs)are important for implementing new and advanced concepts in Earth observation missions.Precise Baseline Determination(PBD)is a prerequisite for LEOs to complete specified missi... Formation flying Low Earth Orbiters(LEOs)are important for implementing new and advanced concepts in Earth observation missions.Precise Baseline Determination(PBD)is a prerequisite for LEOs to complete specified mission targets.PBD is usually performed based on space-borne GNSS data,the relative corrections of phase center and code residual variations play crucial roles in achieving the best relative orbit accuracy.Herein,the influences of antenna Relative Phase Centre Variations(RPCVs)and Single-Difference(SD)Melbourne-Wu¨bbena(MW)Combination Residuals Variations(SD MWVs)on PBD are studied.The methods were tested using flight data from Gravity Recovery And Climate Experiment(GRACE)and GRACE Follow-On(GRACE-FO).Results showed that the maximum values for RPCVs and SD MWVs were 14 mm and 0.32 cycles,respectively.Then,the RPCVs correction significantly enhanced the baseline accuracy;the K-Band Ranging(KBR)measurement consistency improved by 30.1%and 37.5%for GRACE and GRACE-FO,respectively.The application of SD MWVs further improved the accuracy and reliability of PBD results.For GRACE,the ambiguities fixing success rate increased from 85.1%to 97.9%and a baseline consistency of 0.57 mm was achieved for the KBR measurements.It was found that the correction of both RPCVs and SD MWVs reduced the carrier phase observation minus computation residuals from double-difference ionosphere-free combination.In addition,in-flight data processing demonstrated that RPCVs and SD MWVs estimations for the current period could be used for the previous and subsequent periods. 展开更多
关键词 Ambiguity resolution Formation flying Precise baseline determination(PBD) Relative phase centre variations(RPCVs)estimation SD MW combination residuals variations(SD MWVs)estimation
原文传递
Phase Residual Estimations for PCVs of Spaceborne GPS Receiver Antenna and Their Impacts on Precise Orbit Determination of GRACE Satellites 被引量:4
7
作者 TU Jia GU Defeng +1 位作者 WU Yi YI Dongyun 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第4期631-639,共9页
In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual appro... In-flight phase center systematic errors of global positioning system(GPS) receiver antenna are the main restriction for improving the precision of precise orbit determination using dual-frequency GPS.Residual approach is one of the valid methods for in-flight calibration of GPS receiver antenna phase center variations(PCVs) from ground calibration.In this paper,followed by the correction model of spaceborne GPS receiver antenna phase center,ionosphere-free PCVs can be directly estimated by ionosphere-free carrier phase post-fit residuals of reduced dynamic orbit determination.By the data processing of gravity recovery and climate experiment(GRACE) satellites,the following conclusions are drawn.Firstly,the distributions of ionosphere-free carrier phase post-fit residuals from different periods have the similar systematic characteristics.Secondly,simulations show that the influence of phase residual estimations for ionosphere-free PCVs on orbit determination can reach the centimeter level.Finally,it is shown by in-flight data processing that phase residual estimations of current period could not only be used for the calibration for GPS receiver antenna phase center of foretime and current period,but also be used for the forecast of ionosphere-free PCVs in future period,and the accuracy of orbit determination can be well improved. 展开更多
关键词 global positioning system precise orbit determination phase center variations phase residual estimation GRACE
原文传递
16S rDNA-Based Phylogeny of Non-Symbiotic Bacteria of Entomopathogenic Nematodes from Infected Insect Cadavers 被引量:2
8
作者 M. Razia R. Karthik Raja +2 位作者 K. Padmanaban P. Chellapandi S. Sivaramakrishnan 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2011年第3期104-112,共9页
Using 16S rDNA gene sequencing technique, three different species of non-symbiotic bacteria of entomopathogenie nematodes (EPNs) (Steinernema sp. and Heterorhabditis sp.) were isolated and identified from infected... Using 16S rDNA gene sequencing technique, three different species of non-symbiotic bacteria of entomopathogenie nematodes (EPNs) (Steinernema sp. and Heterorhabditis sp.) were isolated and identified from infected insect cadavers (Galleria mellonella larvae) after 48-hour post infections. Sequence similarity analysis revealed that the strains SRK3, SRK4 and SRK5 belong to Ochrobactrum cytisi, Schineria larvae and Ochrobactrum anthropi, respectively. The isolates O. anthropi and S. larvae were found to be associated with Heterorhabditis indica strains BDU-17 and Yer-136, respectively, whereas O. cytisi was associated with Steinernema siamkayai strain BDU-87. Phenotypically, temporal EPN bacteria were fairly related to symbiotic EPN bacteria (Photorhabdus and Xenorhabdus genera). The strains SRK3 and SRK5 were phylogeographically similar to several non-symbionts and contaminated EPN bacteria isolated in Germany (LMG3311T) and China (X-14), while the strain SRK4 was identical to the isolates of S. larvae (L1/57, L1/58, L1/68 and L2/11) from Wohlfahrtia magnifica in Hungary. The result was further confirmed by RNA secondary structure and minimum energy calculations of aligned sequences. This study suggested that the non-symbionts of these nematodes are phylogeographicaily diverged in some extent due to phase variation. Therefore, these strains are not host-dependent, but environment-specific isolates. 展开更多
关键词 ENTOMOPATHOGEN Schineria OCHROBACTRUM non-symbionts PHYLOGENETICS phase variation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部