This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angl...This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.展开更多
This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault curre...This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault current. In this paper, an index based on phasors change is proposed for HIF detection. The phasors are measured by PMU to obtain the square summation of errors. Two types of data are used for error calculation. The first one is sampled data and the second one is estimated data. But this index is not enough to declare presence of a HIF. Therefore another index introduces in order to distinguish the load switching from HIF. Second index utilizes 3rd harmonic current angle because this number of harmonic has a special behaviour during HIF. The verification of the proposed method is done by different simulation cases in EMTP/MATLAB.展开更多
This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine th...This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.展开更多
Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of su...Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.展开更多
Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those s...Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
基于单一线路两端的监控与数据采集系统(supervisory control and data acquisition system,SCADA)和相量采集装置(phasor measurement unit,PMU)多时段量测信息,建立了5种独立线路的约束最小二乘参数估计模型,其中,量测方程分别由线路...基于单一线路两端的监控与数据采集系统(supervisory control and data acquisition system,SCADA)和相量采集装置(phasor measurement unit,PMU)多时段量测信息,建立了5种独立线路的约束最小二乘参数估计模型,其中,量测方程分别由线路两端有功、无功和电压幅值的SCADA量测、电流与电压相量的PMU量测以及线路两端电压相角差的PMU虚拟量测组合形成,约束方程为参数变量的上下限约束。采用Matlab的lsqnonlin优化函数求解参数估计问题,并基于多条典型线路的模拟量测信息仿真分析了所有模型的适用条件。结果表明,在负荷较重、线路较长条件下,利用所建含PMU量测的4种模型,都可以有效估计出线路的阻抗参数。展开更多
针对传统静态状态估计方法的缺点,提出了一种改进的电力系统状态估计方法,即将部分节点相量测量单元(phasor measurement unit,PMU)量测数据与监控数据采集(supervisory control and data acquisition,SCADA)量测数据融合进行电力系统...针对传统静态状态估计方法的缺点,提出了一种改进的电力系统状态估计方法,即将部分节点相量测量单元(phasor measurement unit,PMU)量测数据与监控数据采集(supervisory control and data acquisition,SCADA)量测数据融合进行电力系统的全网状态估计。该方法简化了系统的雅可比矩阵,缩短了计算时间。文章研究了PMU和SCADA系统融合改进后的快速分解法,针对SCADA量测数据的缺点,通过历史数据库对潮流数据进行预测,并依据PMU量测量对系统进行分析,继而进行系统全网状态的动态监测。通过算例证明,与传统的估计方法相比,该方法改善了状态估计的精确性,减少了迭代次数,细致地描绘了电网状态的变化过程,为调度中心下一步的决策提供了依据。展开更多
同步相量测量单元(phasor measurements units,PMU)因能测得高精度的同步相量数据而被广泛应用于电力系统中,而传统的监控及数据采集系统(supervisory control and data acquisition,SCADA)是电力系统运行和静态安全监视的基础。文中提...同步相量测量单元(phasor measurements units,PMU)因能测得高精度的同步相量数据而被广泛应用于电力系统中,而传统的监控及数据采集系统(supervisory control and data acquisition,SCADA)是电力系统运行和静态安全监视的基础。文中提出了一种PMU与SCADA数据共存的数学模型用于电力系统状态估计。该模型在保留原有SCADA数据的同时,通过虚拟测量方法对PMU观测范围进行大范围拓展,提高数据冗余度及状态估计的精度。仿真结果表明,该方法具有较高的估计精度,且不受网络拓扑结构和PMU数量限制,适于SCADA和PMU数据共存系统。展开更多
文摘This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.
文摘This paper proposes a new algorithm for High Impedance Fault (HIF) detection using Phasor Measurement Unit (PMU). This type of faults is difficult to detect by over current protection relays because of low fault current. In this paper, an index based on phasors change is proposed for HIF detection. The phasors are measured by PMU to obtain the square summation of errors. Two types of data are used for error calculation. The first one is sampled data and the second one is estimated data. But this index is not enough to declare presence of a HIF. Therefore another index introduces in order to distinguish the load switching from HIF. Second index utilizes 3rd harmonic current angle because this number of harmonic has a special behaviour during HIF. The verification of the proposed method is done by different simulation cases in EMTP/MATLAB.
文摘This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.
基金supported by the National Key R&D Pro gram (2017YFB0902901)National Nature Science Founda tion of China (51725702, 51627811, 51707064)。
文摘Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.
文摘Phasor Measurement Units(PMUs)provide Global Positioning System(GPS)time-stamped synchronized measurements of voltage and current with the phase angle of the system at certain points along with the grid system.Those synchronized data measurements are extracted in the form of amplitude and phase from various locations of the power grid to monitor and control the power system condition.A PMU device is a crucial part of the power equipment in terms of the cost and operative point of view.However,such ongoing development and improvement to PMUs’principal work are essential to the network operators to enhance the grid quality and the operating expenses.This paper introduces a proposed method that led to lowcost and less complex techniques to optimize the performance of PMU using Second-Order Kalman Filter.It is based on the Asyncrhophasor technique resulting in a phase error minimization when receiving the signal from an access point or from the main access point.The MATLAB model has been created to implement the proposed method in the presence of Gaussian and non-Gaussian.The results have shown the proposed method which is Second-Order Kalman Filter outperforms the existing model.The results were tested usingMean Square Error(MSE).The proposed Second-Order Kalman Filter method has been replaced with a synchronization unit into thePMUstructure to clarify the significance of the proposed new PMU.
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
文摘基于单一线路两端的监控与数据采集系统(supervisory control and data acquisition system,SCADA)和相量采集装置(phasor measurement unit,PMU)多时段量测信息,建立了5种独立线路的约束最小二乘参数估计模型,其中,量测方程分别由线路两端有功、无功和电压幅值的SCADA量测、电流与电压相量的PMU量测以及线路两端电压相角差的PMU虚拟量测组合形成,约束方程为参数变量的上下限约束。采用Matlab的lsqnonlin优化函数求解参数估计问题,并基于多条典型线路的模拟量测信息仿真分析了所有模型的适用条件。结果表明,在负荷较重、线路较长条件下,利用所建含PMU量测的4种模型,都可以有效估计出线路的阻抗参数。
文摘针对传统静态状态估计方法的缺点,提出了一种改进的电力系统状态估计方法,即将部分节点相量测量单元(phasor measurement unit,PMU)量测数据与监控数据采集(supervisory control and data acquisition,SCADA)量测数据融合进行电力系统的全网状态估计。该方法简化了系统的雅可比矩阵,缩短了计算时间。文章研究了PMU和SCADA系统融合改进后的快速分解法,针对SCADA量测数据的缺点,通过历史数据库对潮流数据进行预测,并依据PMU量测量对系统进行分析,继而进行系统全网状态的动态监测。通过算例证明,与传统的估计方法相比,该方法改善了状态估计的精确性,减少了迭代次数,细致地描绘了电网状态的变化过程,为调度中心下一步的决策提供了依据。
文摘同步相量测量单元(phasor measurements units,PMU)因能测得高精度的同步相量数据而被广泛应用于电力系统中,而传统的监控及数据采集系统(supervisory control and data acquisition,SCADA)是电力系统运行和静态安全监视的基础。文中提出了一种PMU与SCADA数据共存的数学模型用于电力系统状态估计。该模型在保留原有SCADA数据的同时,通过虚拟测量方法对PMU观测范围进行大范围拓展,提高数据冗余度及状态估计的精度。仿真结果表明,该方法具有较高的估计精度,且不受网络拓扑结构和PMU数量限制,适于SCADA和PMU数据共存系统。