期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Curing reaction and mechanism of phenol-formaldehyde novolac resins for foundry 被引量:1
1
作者 Yan Shi Li-feng Wang +3 位作者 Yue Han Cong-yan Liao Lin-zhi Xie Chun-rong Yang 《China Foundry》 SCIE 2016年第3期205-210,共6页
In this study on the curing dynamics of phenol-formaldehyde novolac resins(PFNR) and hexamethylene tetramine(HMTA), two typical commercial PFNR were selected as examples and the curing reactions of the resins with HMT... In this study on the curing dynamics of phenol-formaldehyde novolac resins(PFNR) and hexamethylene tetramine(HMTA), two typical commercial PFNR were selected as examples and the curing reactions of the resins with HMTA were studied by differential scanning calorimetry(DSC). Based on the data calculated by the Kissinger equation and the Crane equation, a thermocuring dynamic model was established, from which the process conditions, activation energy, reaction kinetics equation and a f irst-order reaction of the curing reactions were derived. 展开更多
关键词 phenol-formaldehyde novolac resins used for foundry hexamethylene tetramine differential scanning calorimetry curing reaction and mechanism
下载PDF
Reinforcement of Lignin-Based Phenol-Formaldehyde Adhesive with Nano-Crystalline Cellulose (NCC): Curing Behavior and Bonding Property of Plywood 被引量:1
2
作者 Zhenbo Liu Yaolin Zhang +1 位作者 Xiangming Wang Denis Rodrigue 《Materials Sciences and Applications》 2015年第6期567-575,共9页
The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 ... The curing behavior of lignin-based phenol-formaldehyde (LPF) resin with different contents of nano-crystalline cellulose (NCC) was studied by differential scanning calorimetry (DSC) at different heating rates (5, 10 and 20&degC/min) and the bonding property was evaluated by the wet shear strength and wood failure of two-ply plywood panels after soaking in water (48 hours at room temperature and followed by 1-hour boiling). The test results indicated that the NCC content had little influence on the peak temperature, activation energy and the total heat of reaction of LPF resin at 5 and 10&degC/min. But at 20&degC/min, LPF0.00% (LPF resin without NCC) showed the highest total heat of reaction, while LPF0.25% (LPF resin containing 0.25% NCC content) and LPF0.50% (LPF resin containing 0.50% NCC content) gave the lowest value. The wet shear strength was affected by the NCC content to a certain extent. With regard to the results of one-way analysis of variance, the bonding quality could be improved by NCC and the optimum NCC content ranged from 0.25% to 0.50%. The wood failure was also affected by the NCC content, but the trend with respect to NCC content was not clear. 展开更多
关键词 Lignin-Based phenol-formaldehyde Resin (LPF) NANO-CRYSTALLINE CELLULOSE (NCC) Curing Behavior Bonding Properties PLYWOOD
下载PDF
Study on binder system of CO_2-cured phenol-formaldehyde resin used in foundry
3
作者 Liu Weihua Li Yingmin +1 位作者 Qu Xueliang Liu Xiuling 《China Foundry》 SCIE CAS 2008年第2期110-113,共4页
A new aqueous alkaline resol phenol-formaldehyde resin has been prepared from phenol and formaldehyde using NaOH as catalyst; the optimum synthetic process has been determined. With addition of some cross-linking agen... A new aqueous alkaline resol phenol-formaldehyde resin has been prepared from phenol and formaldehyde using NaOH as catalyst; the optimum synthetic process has been determined. With addition of some cross-linking agents, after passing carbon dioxide gas through the resin bonded sand, high as-gassed strength and 24 h strength are achieved. The bonding bridge of the resin bonded sand fracture has been analyzed by using SEM. 展开更多
关键词 cold-box phenol-formaldehyde resin chemical synthesis
下载PDF
Kinetic Study of Curing Phenol-Formaldehyde/Tannin-Formaldehyde Composite Resins
4
作者 Hussein Ali Shnawa Ibraheem Kadum Ibraheem Ashwaq Aboud Shenta 《Natural Resources》 2015年第10期503-513,共11页
This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used... This work presents a study on the uses of tannin-formadehyde derivative into phenolic resins. Eucalyptus tannins (T) were reacted with formaldehyde to form tannin-formaldehyde resin (TF). Then this derivative was used to prepare tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 %w/w. The kinetic values of thermal curing of Phenol-formaldehyde (PF), tannin-formaldehyde and tannin-formaldehyde/phenol-formaldehyde resins (TFPF) at 20 and 40 wt% from TF were studied by monitoring the weight changes which occurred in the samples weight during thermosetting process at four temperature (160°C, 180°C, 200°C and 220°C). The total evolved condensation products from curing reactions were about 32% - 36% per sample weight, and the rate of curing reaction constants was ranged between 0.163 %wt·min-1 at 160°C and 0.50 %wt·min-1 at 220°C. The path of TFPF curing and kinetic values indicated that these resins could be cured with the behavior and velocity comparable to that of PF. The activation energy of TFPF cross-linking was higher than that of PF. Increasing TF level to 20% and 40% into PF can reduce the amount of PF curing reactions density and weight loss percentage. The global kinetic properties showed that the TF participated in the thermoset network formation with acceptable activity and performance. The general results of this paper show that the TF is a suitable alternative material for partially replacement into PF resin. 展开更多
关键词 phenol-formaldehyde Tannin-Formaldehyde CURING REACTIONS Weight Loss Monitoring KINETIC Properties
下载PDF
Study on Physical and Mechanical Properties of Poplar Modified by Phenol-formaldehyde Resin
5
作者 CHAI Yubo1 LIU Huanrong1 LIU Junliang1 LI Longzhe2 TANG Deguo3 1.Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, P.R.China 2. Construction Bureau of Yanbian Korean Autonomous Prefecture, Yanji 133000, P.R.China 3. Forestry Bureau of Wangqing County, Wangqing 133200, P.R.China 《Chinese Forestry Science and Technology》 2008年第1期82-87,共6页
Impregnation method can effectively improve physical and mechanical properties of wood. In this study, plantation poplar lumbers are impregnated by a low molecular weight phenol-formaldehyde resin solution with concen... Impregnation method can effectively improve physical and mechanical properties of wood. In this study, plantation poplar lumbers are impregnated by a low molecular weight phenol-formaldehyde resin solution with concentration of 30% under vacuum-pressure process, and then dried and machined according to the related standards. The results show that the physical and mechanical properties of poplar can be improved by the treatment, except for toughness. The average density of poplar increases from 0.397 to 0.710 g/cm3, the modulus of elasticity in static bending, the bending strength and the compressive strength parallel to grain of treated specimens increase by 56.71%, 112.97% and 87.69%, respectively, compared to the untreated. And the hardness values on radial and tangential sections, and nail holding power as well as abrasion resistance of treated specimens improve by 283.87%, 82.78%, 71.43% and 22.06%, respectively; while toughness decreases by 48.80%. 展开更多
关键词 phenol-formaldehyde MODIFICATION IMPREGNATION I-72 poplar (Populus xeuramericana) density strength plantion physical mechanical property
原文传递
LARIX GMELINI TANNIN-BASED ADHESIVE FOR PLYWOOD
6
作者 卢跃斌 史强 +1 位作者 陈俊 高振中 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1994年第3期65-68,共4页
Larix tannin-phenol-formaldehyde (TPF) adhesive, having 60% by weight of phenol bcing replaced, was evaluated for its utilization in plywood. The kinetic characteristic of the TPF resin was investigated through differ... Larix tannin-phenol-formaldehyde (TPF) adhesive, having 60% by weight of phenol bcing replaced, was evaluated for its utilization in plywood. The kinetic characteristic of the TPF resin was investigated through differential scanning calorimetry (DSC) and the results obtained from the DSC scans show that the resin has a little bit different thermochemical behavior from that of phenol-formaldehyde (PF) resin. Two kinds of plywood panels wcre produced using the TPF adhesive in laboratory. The desired test results met the Chinese GB 9846-88 and ZB B70006-88, respectively, and the long assembly time of TPF resin in preparing plywood can be improved by mixing with the filler.All the properties of plywoods bonded with the TPF adhesive were compared with those obtaincd with synthetic PF adhesive. 展开更多
关键词 LARIX gmelini Tannin-phenol-formaldehyde phenol-formaldehyde Differential scanning CALORIMETRY PLYWOOD
下载PDF
Synthetic Process of Bio-Based Phenol Formaldehyde Adhesive Derived from Demethylated Wheat Straw Alkali Lignin and Its Curing Behavior 被引量:4
7
作者 Yan Song Zhixin Wang +2 位作者 Xin Zhang Rong Zhang Jinchun Li 《Journal of Renewable Materials》 SCIE EI 2021年第5期943-957,共15页
Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendly... Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendlybio-based polyphenol material. In the present work, the demethylated wheat straw alkali lignin (D-Lig), preparedby demethylation of wheat straw alkali lignin (Lig) using an in-situ generated Lewis acid, was used to synthesizebio-based phenol formaldehyde resin adhesive (D-LPF) applied in plywood. Effects of synthetic process’s factors,including lignin substitution for phenol, NaOH concentration and molar ratio of formaldehyde to phenol, on thebonding strength and free formaldehyde content of D-LPF were investigated in detail, and the optimum syntheticprocess of D-LPF was obtained as following: Lignin substitution for phenol 60%, NaOH concentration 5.0% andmolar ratio of formaldehyde to phenol 2.0, and under the optimum reaction condition, the D-LPF presented lower free formaldehyde content (0.18%) and higher bonding strength (2.19 MPa), which was better than those ofcontaining-lignin phenol formaldehyde resin adhesive (LPF). Additionally, the curing behavior of the adhesivewas studied by differential scanning calorimetry (DSC) combined with gel time. It can be obtained that D-LPFresin adhesive had the shortest gel time, and fastest curing rate, compared with those of PF and L-PF resin adhesives. The curing kinetics data was fitted well by Kissinger model using non-isothermal DSC method, and theaverage activation energy value was 85.3 kJ/mol, slightly higher than that of commercial PF resin, while lowerthan that of LPF (90.2 kJ/mol). Finally, based on the analytical results of high temperature fourier transform infrared spectroscopy (FTIR), a possible curing mechanism of D-LPF was proposed. 展开更多
关键词 LIGNIN DEMETHYLATION phenol-formaldehyde resin biobased adhesive synthetic process curing behavior
下载PDF
Impregnated Paper-Based Decorative Laminates Prepared from Lignin-Substituted Phenolic Resins 被引量:2
8
作者 Marion Thébault Ya Li +4 位作者 Christopher Beuc Stephan Frömel-Frybort Edith-Martha Zikulnig-Rusch Larysa Kutuzova Andreas Kandelbauer 《Journal of Renewable Materials》 SCIE EI 2020年第10期1181-1198,共18页
High Pressure Laminates(HPL)panels consist of stacks of self-gluing paper sheets soaked with phenol-formaldehyde(PF)resins.An important requirement for such PFs is that they must rapidly penetrate and saturate the pa... High Pressure Laminates(HPL)panels consist of stacks of self-gluing paper sheets soaked with phenol-formaldehyde(PF)resins.An important requirement for such PFs is that they must rapidly penetrate and saturate the paper pores.Partially substituting phenol with bio-based phenolic chemicals like lignin changes the physico-chemical properties of the resin and affects its ability to penetrate the paper.In this study,PF formulations containing different proportions of lignosulfonate and kraft lignin were used to prepare paper-based laminates.The penetration of a Kraft paper sheet was characterized by a recently introduced,new device measuring the conductivity between both sides of the paper sheet after a drop of resin was placed on the surface and allowed to penetrate the sheet.The main target value measured was the time required for a specific resin to completely penetrate the defined paper sample(“penetration time”).This penetration time generally depends on the molecular weight distribution,the flow behavior and the polarity of the resin which in turn are dependent on the manufacturing conditions of the resin.In the present study,the influences of the three process factors:(1)type of lignin material used for substitution,(2)lignin modification by phenolation and(3)degree of phenol substitution on the penetration times of various lignin-phenolic hybrid impregnation resins were studied using a complete twolevel three-factorial experimental design.Thin laminates made with the resins diluted in methanol were mechanically tested in terms of tensile and flexural strains,and their cross-sections were studied by light microscopy. 展开更多
关键词 LIGNIN phenol-formaldehyde resin(PF) decorative laminate impregnated paper
下载PDF
NaOH and Ba(OH)_2 Compound Catalyzed PhenolResorcinol-Formaldehyde Copolycondensation Resin Adhesive for Recombined Bamboo 被引量:1
9
作者 左迎峰 LIU Wenjie +3 位作者 XIAO Junhua LI Xianjun ZHAO Xing 吴义强 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期459-464,共6页
In order to reduce the curing temperature, shorten the curing time of phenol-formaldehyde(PF) resin adhesive, and ensure the good water-solubility, NaOH and Ba(OH)_2 were used as compound catalysts. The influences of ... In order to reduce the curing temperature, shorten the curing time of phenol-formaldehyde(PF) resin adhesive, and ensure the good water-solubility, NaOH and Ba(OH)_2 were used as compound catalysts. The influences of the adding time of Ba(OH)_2, the adding amount of NaOH, Ba(OH)_2 and resorcinol on the properties of adhesives were studied. The properties of NaOH catalyzed phenol-formaldehyde(PF) adhesive, NaOH and Ba(OH)_2 compound catalyzed PF adhesive, NaOH and Ba(OH)_2 compound catalyzed phenol-resorcinol-formaldehyde(PRF) adhesive, and the prepared recombinant bamboo with three kinds of adhesives were compared. The experimental results show that NaOH and Ba(OH)_2 compound catalyst not only shortens the curing time of PF adhesive, but also guarantees the suitable water solubility of adhesive. After copolycondensation with resorcinol, the curing time of adhesive is further shortened, the water solubility is improved obviously, and the highest bonding strength is obtained. Infrared spectrum analysis shows that the reaction activity point of NaOH and Ba(OH)_2 compound catalyzed PRF adhesive will increase, so that both the curing temperature and curing enthalpy decrease. 展开更多
关键词 phenol-formaldehyde RESIN NaOH Ba(OH)2 compound catalytic RESORCINOL recombined BAMBOO
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部