Seeds play a crucial role in plant reproduction,making it essential to identify genes that affect seed development.In this study,we focused on UDP-glucosyltransferase 71C4(UGT71C4)in cotton,a member of the glycosyltra...Seeds play a crucial role in plant reproduction,making it essential to identify genes that affect seed development.In this study,we focused on UDP-glucosyltransferase 71C4(UGT71C4)in cotton,a member of the glycosyltransferase family that shapes seed width and length,thereby influencing seed index and seed cotton yield.Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids,which redirects metabolic flux from lignin to flavonoid metabolism.This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides,significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g.By contrast,knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis.This redirection leads to increased ectopic lignin deposition in the ovule,inhibiting ovule growth and development,and alters yield components,increasing the lint percentage from 41.42%to 43.40%and reducing the seed index from 10.66 g to 8.60 g.Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.展开更多
[Objective] Expressions of key enzymatic genes involved in phenyl-propanoid metabolic pathway in potato and StR2R3-MYB and StTGA transcripters were investigated in the present study. [Method] The primitive cultivar Ya...[Objective] Expressions of key enzymatic genes involved in phenyl-propanoid metabolic pathway in potato and StR2R3-MYB and StTGA transcripters were investigated in the present study. [Method] The primitive cultivar Yan was the materials for replicated trials and total RNA extracted from tissues of seedlings. Re-al-time florescent quantification PCR, multiple intervals of air temperature, light-il umi-nation and time-duration were factors of treatments in the experiment. Data on gene expressions were obtained and proceed to asses and compare effects based on statistical analysis. [Result] The results showed negative correlations between tem-perature degrees and expressions of StPAL, StDFR and StR2R3-MYB genes but not StTGA. Positive correlations, however, were derived between those of StCHS, StDFR and StR2R3-MYB and light-intensity. Significant interactive effects between expressions of StPAL and StDFR and treatments, light intensity and temperature degree, along the phenylpropanoid pathway were observed. Transcription regulator of StR2R3-MYB showed significant positive effect on the expression of StCHS of potato. StTGA transcription factor, on the other hand, gave significant negative ef-fects on the expression of StDFR. [Conclusion] Results from present study reveal the role of environmental factors and complicate interactions between such condi-tions as temperature-light il umination and mRNA function of target genes.展开更多
基金supported by grants from the Fundamental Research Funds for the Central Universities(226-2022-00100)the NSFC(32130075)+1 种基金Xinjiang Production and Construction Corps(2023AA008)Research Startup Funding from Hainan Institute of Zhejiang University(0202-6602-A12201).
文摘Seeds play a crucial role in plant reproduction,making it essential to identify genes that affect seed development.In this study,we focused on UDP-glucosyltransferase 71C4(UGT71C4)in cotton,a member of the glycosyltransferase family that shapes seed width and length,thereby influencing seed index and seed cotton yield.Overexpression of UGT71C4 results in seed enlargement owing to its glycosyltransferase activity on flavonoids,which redirects metabolic flux from lignin to flavonoid metabolism.This shift promotes cell proliferation in the ovule via accumulation of flavonoid glycosides,significantly enhancing seed cotton yield and increasing the seed index from 10.66 g to 11.91 g.By contrast,knockout of UGT71C4 leads to smaller seeds through activation of the lignin metabolism pathway and redirection of metabolic flux back to lignin synthesis.This redirection leads to increased ectopic lignin deposition in the ovule,inhibiting ovule growth and development,and alters yield components,increasing the lint percentage from 41.42%to 43.40%and reducing the seed index from 10.66 g to 8.60 g.Our research sheds new light on seed size development and reveals potential pathways for enhancing seed yield.
基金Supported by the Natural Science Foundation of China(31371683)the National Key Technology R&D Program of China(2012BAD02B05-8) during 12th Five-year Plan PeriodEarmarked Fund for China Agriculture Research System(CARS-10-P19)~~
文摘[Objective] Expressions of key enzymatic genes involved in phenyl-propanoid metabolic pathway in potato and StR2R3-MYB and StTGA transcripters were investigated in the present study. [Method] The primitive cultivar Yan was the materials for replicated trials and total RNA extracted from tissues of seedlings. Re-al-time florescent quantification PCR, multiple intervals of air temperature, light-il umi-nation and time-duration were factors of treatments in the experiment. Data on gene expressions were obtained and proceed to asses and compare effects based on statistical analysis. [Result] The results showed negative correlations between tem-perature degrees and expressions of StPAL, StDFR and StR2R3-MYB genes but not StTGA. Positive correlations, however, were derived between those of StCHS, StDFR and StR2R3-MYB and light-intensity. Significant interactive effects between expressions of StPAL and StDFR and treatments, light intensity and temperature degree, along the phenylpropanoid pathway were observed. Transcription regulator of StR2R3-MYB showed significant positive effect on the expression of StCHS of potato. StTGA transcription factor, on the other hand, gave significant negative ef-fects on the expression of StDFR. [Conclusion] Results from present study reveal the role of environmental factors and complicate interactions between such condi-tions as temperature-light il umination and mRNA function of target genes.