By generalizing the isotope effect for elemental superconductors (SCs) to the case of pairing in the 2-phonon exchange mechanism for composite SCs, we give here an explanation of the well-known increase in the critica...By generalizing the isotope effect for elemental superconductors (SCs) to the case of pairing in the 2-phonon exchange mechanism for composite SCs, we give here an explanation of the well-known increase in the critical temperature (Tc) of Bi2Sr2CaCu2O8 from 95 K to 110 K and of Bi2Sr2Ca2Cu3O10 from 105 to 115 - 125 K when Bi and Sr in these are replaced by Tl and Ba, respectively. On this basis, we also give the estimated Tcs of some hypothetical SCs, assuming that they may be fabricated by substitutions similar to Bi → Tl and Sr → Ba.展开更多
Mani observed zero-registance states similar to those quantum-Hall-effect states in GaAs/AlGaAs but without the Hall resistance plateaus upon the application of radiations [R. G. Mani, Physica E 22, 1 (2004)]. An inte...Mani observed zero-registance states similar to those quantum-Hall-effect states in GaAs/AlGaAs but without the Hall resistance plateaus upon the application of radiations [R. G. Mani, Physica E 22, 1 (2004)]. An interpretation is presented. The applied radiation excites “holes”. The condensed composite (c)-bosons formed in the excited channel create a superconducting state with an energy gap. The supercondensate suppresses the non-condensed c-bosons at the higher energy, but it cannot suppress the c-fermions in the base channel, and the small normal current accompanied by the Hall field yeilds a B-linear Hall resistivity.展开更多
Employing the Geilikman-Kresin (GK) theory, we address the experimental data obtained by Bauer et al., and by Schneider et al., on the thermal conductivity (κ) of superconducting MgB2. The two gaps of this compound h...Employing the Geilikman-Kresin (GK) theory, we address the experimental data obtained by Bauer et al., and by Schneider et al., on the thermal conductivity (κ) of superconducting MgB2. The two gaps of this compound have qualitatively been understood via the well-known Suhl, Matthias, and Walker’s (SMW) approach to multigap superconductivity. Since this approach is based on one-phonon exchange mechanism for the formation of Cooper pairs, it cannot give a quantitative account of the values of Tc and the multiple gaps that characterize MgB2 and other high-Tc superconductors (SCs). Despite this fact and some rather ambiguous features, it has been pointed out in a recent critical review by Malik and Llano (ML) that the SMW approach provides an important clue to deal with an SC the two gaps of which close at the same Tc: consider the possibility of the interaction parameters in the theory to be temperature-dependent. Guided by this clue, ML gave a complete summary of parameters that quantitatively account for the Tc and the gaps of MgB2 via the generalized BCS equations (GBCSEs). GBCSEs which we recall, invoke multi-phonon exchange mechanism for the formation of Cooper pairs and multiple Debye temperatures to deal with composite SCs. The parameter-values given in ML are used here to calculate the temperature-dependent gaps, which are an essential input for the GK theory. Notable features of this work are: 1)?kMgB2 is calculated for both—the scenario in which the two gaps of MgB2 close/do not close at the same temperature whence it is found that 2) the latter scenario yields results in better agreement with experiment.展开更多
We address the Tc (s) and multiple gaps of La2CuO4 (LCO) via generalized BCS equations incorporating chemical potential. Appealing to the structure of the unit cell of LCO, which comprises sub- lattices with LaO and O...We address the Tc (s) and multiple gaps of La2CuO4 (LCO) via generalized BCS equations incorporating chemical potential. Appealing to the structure of the unit cell of LCO, which comprises sub- lattices with LaO and OLa layers and brings into play two Debye temperatures, the concept of itinerancy of electrons, and an insight provided by Tacon et al.’s recent experimental work concerned with YBa2Cu3O6.6 which reveals that very large electron-phonon coupling can occur in a very narrow region of phonon wavelengths, we are enabled to account for all values of its gap-to-Tc ratio (2Δ0/kBTc), i.e., 4.3, 7.1, ≈8 and 9.3, which were reported by Bednorz and Müller in their Nobel lecture. Our study predicts carrier concentrations corresponding to these gap values to lie in the range 1.3 × 1021 - 5.6 × 1021 cm-3, and values of 0.27 - 0.29 and 1.12 for the gap-to-Tc ratios of the smaller gaps.展开更多
文摘By generalizing the isotope effect for elemental superconductors (SCs) to the case of pairing in the 2-phonon exchange mechanism for composite SCs, we give here an explanation of the well-known increase in the critical temperature (Tc) of Bi2Sr2CaCu2O8 from 95 K to 110 K and of Bi2Sr2Ca2Cu3O10 from 105 to 115 - 125 K when Bi and Sr in these are replaced by Tl and Ba, respectively. On this basis, we also give the estimated Tcs of some hypothetical SCs, assuming that they may be fabricated by substitutions similar to Bi → Tl and Sr → Ba.
文摘Mani observed zero-registance states similar to those quantum-Hall-effect states in GaAs/AlGaAs but without the Hall resistance plateaus upon the application of radiations [R. G. Mani, Physica E 22, 1 (2004)]. An interpretation is presented. The applied radiation excites “holes”. The condensed composite (c)-bosons formed in the excited channel create a superconducting state with an energy gap. The supercondensate suppresses the non-condensed c-bosons at the higher energy, but it cannot suppress the c-fermions in the base channel, and the small normal current accompanied by the Hall field yeilds a B-linear Hall resistivity.
文摘Employing the Geilikman-Kresin (GK) theory, we address the experimental data obtained by Bauer et al., and by Schneider et al., on the thermal conductivity (κ) of superconducting MgB2. The two gaps of this compound have qualitatively been understood via the well-known Suhl, Matthias, and Walker’s (SMW) approach to multigap superconductivity. Since this approach is based on one-phonon exchange mechanism for the formation of Cooper pairs, it cannot give a quantitative account of the values of Tc and the multiple gaps that characterize MgB2 and other high-Tc superconductors (SCs). Despite this fact and some rather ambiguous features, it has been pointed out in a recent critical review by Malik and Llano (ML) that the SMW approach provides an important clue to deal with an SC the two gaps of which close at the same Tc: consider the possibility of the interaction parameters in the theory to be temperature-dependent. Guided by this clue, ML gave a complete summary of parameters that quantitatively account for the Tc and the gaps of MgB2 via the generalized BCS equations (GBCSEs). GBCSEs which we recall, invoke multi-phonon exchange mechanism for the formation of Cooper pairs and multiple Debye temperatures to deal with composite SCs. The parameter-values given in ML are used here to calculate the temperature-dependent gaps, which are an essential input for the GK theory. Notable features of this work are: 1)?kMgB2 is calculated for both—the scenario in which the two gaps of MgB2 close/do not close at the same temperature whence it is found that 2) the latter scenario yields results in better agreement with experiment.
文摘We address the Tc (s) and multiple gaps of La2CuO4 (LCO) via generalized BCS equations incorporating chemical potential. Appealing to the structure of the unit cell of LCO, which comprises sub- lattices with LaO and OLa layers and brings into play two Debye temperatures, the concept of itinerancy of electrons, and an insight provided by Tacon et al.’s recent experimental work concerned with YBa2Cu3O6.6 which reveals that very large electron-phonon coupling can occur in a very narrow region of phonon wavelengths, we are enabled to account for all values of its gap-to-Tc ratio (2Δ0/kBTc), i.e., 4.3, 7.1, ≈8 and 9.3, which were reported by Bednorz and Müller in their Nobel lecture. Our study predicts carrier concentrations corresponding to these gap values to lie in the range 1.3 × 1021 - 5.6 × 1021 cm-3, and values of 0.27 - 0.29 and 1.12 for the gap-to-Tc ratios of the smaller gaps.