期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Residual Effects of Phosphate Amendments on Rainfed Rice (Oryza sativa L.) Nutrition and Soil Properties in Three Agroecological Zones of Côte d’Ivoire
1
作者 Affi Jeanne Bongoua-Devisme Wondouet Hippolyte Kpan +3 位作者 Pla Kouassi Adou Franck Michaël Lemonou Bahan Konan-Kan Hippolith Kouadio Anselme Kan Louis Koko 《Open Journal of Soil Science》 2024年第10期606-634,共29页
A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple super... A study was conducted in Côte d’Ivoire to assess the after-effect of phosphate amendments on rice yields and soil properties. Eight types of amendments, composed of Moroccan phosphate rock (PRM) and triple superphosphate were tested in three agroecological zones over three consecutive years of cultivation. This study revealed that the application of Moroccan phosphate rock (PRM) and/or triple superphosphate (TSP) did not significantly affect soil cation exchange capacity (CEC) and organic carbon (Corg) content. However, there was a negative residual effect of PRM-rich treatments on soil pH and K and N content, but the impact varies depending on the characteristics of the soils studied. Furthermore, nutrient losses, notably nitrogen from −17.5 to −267.7 kg/ha and potassium (−0.1 to 0.7 kg/ha), were observed in all treatments. Only phosphorus showed a positive balance of +49.56 to +52 kg/ha in PRM-rich treatments. Treatment T3, composed of 80% RPM and 20% TSP, was the most effective in all zones, with a relative increase in grain yields of over 100% compared to the control. These results suggest that the input of natural phosphate rock can significantly improve rice yields and soil properties in the studied agroecological zones in Côte d’Ivoire. 展开更多
关键词 phosphate amendment Moroccan phosphate Rock Triple Superphosphate Yield After-Effect Nutrition Crop Balance Cote d’Ivoire
下载PDF
Can phosphate compounds be used to reduce the plant uptake of Pb and resist the Pb stress in Pb-contaminated soils? 被引量:3
2
作者 CHEN Shibao CHEN Li +1 位作者 MA Yibing HUANG Yizong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第3期360-365,共6页
The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soil... The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soils with 2500, or 5000 mg P2O5/kg soil of hydroxyapatite (HA), phosphate rock (PR), single-superphosphate (SSP) and the mix of HA/SSP (HASSP) were evaluated in pot experiments. Results showed that the Pb concentrations in shoots and roots decreased by 18.3%-51.6% and 16.8%-57.3% among the treatments respectively compared to the control samples. The efficiency order of these phosphate-amendments in reducing Pb uptake was as follows: HASSP= HA 〉 SSP ,= PR. With the addition of SSP, HA and the mix of HA/SSP, the SOD activity in shoot was reduced markedly (P 〈 0.05) compared with that in the control group. For example, the SOD activities in shoot by the treatments of HASSP, SSP, and HA in 5000 mg P2O5/kg were found to be only 51.3%, 56.2%, and 56.7%, respectively. Similar effects were also observed on the level of MDA in the shoots with a decrease in 24.5%-56.3%. The results verified the inference that phosphate compounds could be used to reduce the plant uptake of Pb and resist the Pb stress in the plant vegetated in Pb-contaminated soils. 展开更多
关键词 phosphate amendments lead superoxide dismutase (SOD) malondialdehyde (MDA) contaminated soil
下载PDF
Integrated Effects of Phosphate Rock and Chemical Fertilizers on the Dynamics of Soil Bacterial in Acidic Rice Paddy Soils of Man (Ivory Coast)
3
作者 Affi Jeanne Bongoua-Devisme Sainte Adélaïde Ahya Edith Kouakou +1 位作者 Konan-Kan Hippolyte Kouadio Franck Michaël Lemonou Bahan 《Advances in Microbiology》 CAS 2024年第10期513-531,共19页
In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization ... In agricultural soils, phosphorus is often limited, leading farmers to employ artificial supplementation through both inorganic and organic fertilization methods due to its restricted availability. Soil fertilization has the potential to augment both the abundance and diversity of bacterial communities. Our study aimed to assess the effects of phosphate amendments, derived from natural phosphate rock, and chemical fertilizers (TSP, NPK), on the density and diversity of bacterial communities within the study plots. We developed and applied eight phosphate amendments during the initial cultivation cycle. Soil samples were collected post 1st and 2nd cultivation cycles, and the quantification of both total and cultivable phosphate-solubilizing bacteria (PSB) was conducted. Additionally, we analyzed bacterial community structure, α-diversity (Shannon Diversity Index, Evenness Index, Chao1 Index). The combination of natural phosphate rock (PR) and chemical fertilizers (TSP, NPK) significantly increased (p 7 bacteria/g dry soil) and phosphate-solubilizing bacteria (0.01 to 6.8 × 107 PSB/g dry soil) in comparison to unamended control soils. The diversity of bacterial phyla (Firmicutes, Actinobacteria, Proteobacteria, Halobacterota, Chloroflexia) observed under each treatment remained consistent regardless of the nature of the phosphate amendment applied. However, changes in the abundance of the bacterial phyla populations were observed as a function of the nature of the phosphate amendment or chemical fertilizer. It appears that the addition of excessive natural phosphate rock does not alter the number and the diversity of soil microorganisms population despite successive cultivation cycles. However, the addition of excessive chemical fertilizer reduces soil microorganisms density and structure after the 2nd cultivation cycle. 展开更多
关键词 phosphate amendments phosphate Solubilizing Bacteria P-Cycle Genes Chemical Fertilizer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部