A primary cDNA library of Aspergillus niger H1 was constructed using the switching mechanism at the 5′ end of the RNA transcript(SMART) technique. A total of 169 clones exhibited halos when grown on tricalcium phos...A primary cDNA library of Aspergillus niger H1 was constructed using the switching mechanism at the 5′ end of the RNA transcript(SMART) technique. A total of 169 clones exhibited halos when grown on tricalcium phosphate medium, and the H-46 clone displayed a clear halo. The full-length c DNA of the clone H-46 clone was 1 407 bp in length with a complete open reading frame(ORF) of 816 bp, and it encoded a protein that contained 272 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORFs of the H-46 clone and the Bax inhibitor family(BI-1-like) proteins of other fungi. Acetic acid was secreted by Escherichia coli DH5α that express the BI-1-like gene. The level attained was 492.52 mg L^(-1), which was associated with the release of 0.212 mg m L^(-1) of soluble phosphate at 28 h. These results showed that the heterologous expression of BI-1-like genes in Eschericha coli DH5α increased the secretion of acetic acid by altering the membrane permeability and enhancing the solubility of phosphate(P).展开更多
Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of ni...Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of nickel and cobalt.Di(2-ethylhexyl)phosphate acid(D2EHPA)showed high extraction rate and selectivity of Fe^(3+) over other metal ions.The acidity of the aqueous solution is crucial to the extraction of Fe^(3+),and the stoichiometry ratio between Fe^(3+) and the extractant is 0.86:1.54.The enthalpy for the extraction of Fe^(3+) using D2EHPA was 19.50 kJ/mol.The extraction of Fe^(3+)was ≥99% under the optimized conditions after a three-stage solvent extraction process.The iron stripping effects of different reagents showed an order of H_(2)C_(2)O_(4)>NH_(4)HCO_(3)>HCl>NaCl>NaHCO_(3)>Na_(2)SO_(3).The stripping of Fe was ≥99% under the optimized conditions using H_(2)C_(2)O_(4) as a stripping reagent.展开更多
Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in re...Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.展开更多
The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and messenger(IP3)-mediated manner has put Ca 2+-mobilization at the center stage of signal trans...The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and messenger(IP3)-mediated manner has put Ca 2+-mobilization at the center stage of signal transduction mechanisms.During the late 1980s,we showed that Ca2+-stores can be mobilized by two other messengers unrelated to inositol trisphosphate(IP 3) and identified them as cyclic ADP-ribose(cADPR),a novel cyclic nucleotide from NAD,and nicotinic acid adenine dinucleotide phosphate(NAADP),a linear metabolite of NADP.Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms.Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum,while that of NAADP is the two pore channel in endolysosomes. As cADPR and NAADP are structurally and functionally distinct,it is remarkable that they are synthesized by the same enzyme.They are thus fraternal twin messengers.We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and,through homology,found its mammalian homolog,CD38.Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion,susceptibility to bacterial infection,to social behavior of mice through modulating neuronal oxytocin secretion.We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis.This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.展开更多
基金supported by the National Natural Science Foundation of China(41440008)
文摘A primary cDNA library of Aspergillus niger H1 was constructed using the switching mechanism at the 5′ end of the RNA transcript(SMART) technique. A total of 169 clones exhibited halos when grown on tricalcium phosphate medium, and the H-46 clone displayed a clear halo. The full-length c DNA of the clone H-46 clone was 1 407 bp in length with a complete open reading frame(ORF) of 816 bp, and it encoded a protein that contained 272 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORFs of the H-46 clone and the Bax inhibitor family(BI-1-like) proteins of other fungi. Acetic acid was secreted by Escherichia coli DH5α that express the BI-1-like gene. The level attained was 492.52 mg L^(-1), which was associated with the release of 0.212 mg m L^(-1) of soluble phosphate at 28 h. These results showed that the heterologous expression of BI-1-like genes in Eschericha coli DH5α increased the secretion of acetic acid by altering the membrane permeability and enhancing the solubility of phosphate(P).
基金financially supported by the National Key Research and Development Program of China(Grant No.018YFC1900502)Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDJ-SSW-JSC021)+1 种基金the National Natural Science Foundation of China(Grant Nos.21606241,51804289 and 51774260)CAS Interdisciplinary Innovation Team.
文摘Metal ions including Fe^(3+),Ca^(2+),Mg^(2+),Ni^(2+),Co^(2+) and Cu^(2+) are commonly found in the leaching solution of laterite-nickel ores,and the pre-removal of Fe^(3+) is extremely important for the recovery of nickel and cobalt.Di(2-ethylhexyl)phosphate acid(D2EHPA)showed high extraction rate and selectivity of Fe^(3+) over other metal ions.The acidity of the aqueous solution is crucial to the extraction of Fe^(3+),and the stoichiometry ratio between Fe^(3+) and the extractant is 0.86:1.54.The enthalpy for the extraction of Fe^(3+) using D2EHPA was 19.50 kJ/mol.The extraction of Fe^(3+)was ≥99% under the optimized conditions after a three-stage solvent extraction process.The iron stripping effects of different reagents showed an order of H_(2)C_(2)O_(4)>NH_(4)HCO_(3)>HCl>NaCl>NaHCO_(3)>Na_(2)SO_(3).The stripping of Fe was ≥99% under the optimized conditions using H_(2)C_(2)O_(4) as a stripping reagent.
文摘Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.
基金supported by the Research Grants Council of Hong Kong(Grant Nos.769107,768408, 769309 and 770610)the National Natural Science Foundation of China/the Research Grants Council of Hong Kong(Grant No.N_HKU 722/08)
文摘The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and messenger(IP3)-mediated manner has put Ca 2+-mobilization at the center stage of signal transduction mechanisms.During the late 1980s,we showed that Ca2+-stores can be mobilized by two other messengers unrelated to inositol trisphosphate(IP 3) and identified them as cyclic ADP-ribose(cADPR),a novel cyclic nucleotide from NAD,and nicotinic acid adenine dinucleotide phosphate(NAADP),a linear metabolite of NADP.Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms.Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum,while that of NAADP is the two pore channel in endolysosomes. As cADPR and NAADP are structurally and functionally distinct,it is remarkable that they are synthesized by the same enzyme.They are thus fraternal twin messengers.We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and,through homology,found its mammalian homolog,CD38.Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion,susceptibility to bacterial infection,to social behavior of mice through modulating neuronal oxytocin secretion.We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis.This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.