The surface-modified zinc phosphate (Zn3(PO4)2) nanocrystals were synthesized by a facile and efficient one-step ultrasonic-template-microwave (UTM) assisted route. The crystal structure, optical properties and morpho...The surface-modified zinc phosphate (Zn3(PO4)2) nanocrystals were synthesized by a facile and efficient one-step ultrasonic-template-microwave (UTM) assisted route. The crystal structure, optical properties and morphologies of zinc phosphate nanocrystals were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscope. And the TEM image showed that the product had good dispersion with a particle size of 30 – 35 nm. The anti-corrosion function of anti-corrosive paint using zinc phosphate nanocrystals was researched and the experiment result showed that the salt atmosphere–resistant time was 158 h longer than that of zinc phosphate bulk materials on market. The performance of zinc phosphate nanocrystals with modified surface synthesized by one-step UTM assisted route was improved 63.2% compared with the bulk materials.展开更多
文摘The surface-modified zinc phosphate (Zn3(PO4)2) nanocrystals were synthesized by a facile and efficient one-step ultrasonic-template-microwave (UTM) assisted route. The crystal structure, optical properties and morphologies of zinc phosphate nanocrystals were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscope. And the TEM image showed that the product had good dispersion with a particle size of 30 – 35 nm. The anti-corrosion function of anti-corrosive paint using zinc phosphate nanocrystals was researched and the experiment result showed that the salt atmosphere–resistant time was 158 h longer than that of zinc phosphate bulk materials on market. The performance of zinc phosphate nanocrystals with modified surface synthesized by one-step UTM assisted route was improved 63.2% compared with the bulk materials.