BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many c...BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.展开更多
OBJECTIVE:To investigate the antitumor effects of bornyl acetate(BA)isolated from Sharen(Fructus Amomi)in colorectal cancer(CRC)and the underlying mechanisms.METHODS:SW480 and HT29 cells were treated with increasing d...OBJECTIVE:To investigate the antitumor effects of bornyl acetate(BA)isolated from Sharen(Fructus Amomi)in colorectal cancer(CRC)and the underlying mechanisms.METHODS:SW480 and HT29 cells were treated with increasing doses of BA in order to determine its antitumor effects in vitro.Cell viability,colony formation,cell cycle,and apoptosis as well as migration and invasion were assessed using various assays.In addition,the in vivo antitumor effects of BA were assessed using a xenograft mouse model.We then assessed the mechanism of action of BA by conducting pathway activator-mediated rescue experiments and assessed the protein levels by Western blot analysis.RESULTS:BA showed anti-CRC tumor activities in vitro by suppressing cell proliferation and colony formation,inducing apoptosis,blocking cell cycle,and inhibiting migration and invasion.These effects were mediated via suppression of the phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)pathway.In the tumor xenograft experiment,BA was found to repress tumor growth in vivo with low toxicity.CONCLUSIONS:The results demonstrated that BA exerts antitumor effects by suppressing the PI3K/AKT pathway,with low toxicity.Thus,BA might be a potential novel therapeutic agent for CRC.展开更多
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig...Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.展开更多
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. Howe...Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.展开更多
Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current st...Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current study aimed to explore the function and potential mechanism of TOP2A in GBC.Methods:Based on Gene Expression Profiling Interactive Analysis data,we found TOP2A was significantly up-regulated in GBC tissues and resulting in shorter overall survival.Quantitative real-time polymerase chain reaction and immunohistochemistry were conducted to detect the expression of TOP2A in 45 pairs of GBC tissues and adjacent non-tumor tissues.In vitro,cell proliferation,migration,and invasion ability were examined by cell counting kit-8 and transwell assay,respectively.Epithelial-mesenchymal transition(EMT)related and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway-related markers were measured by Western blotting.Xenograft model assay was performed to evaluate the effect of TOP2A in vivo.Results:TOP2A was found up-regulated in GBC(tumor vs.normal,12.62 vs.0.34)and correlated with the late tumor node metastasis stage(P=0.0032),present of lymph node metastasis(P=0.0273),and poor prognosis in GBC patients(log-rank P=0.028).In vitro and in vivo assays showed that knockdown of TOP2A notably inhibited cell proliferation,migration,invasion,EMT process,and tumor growth in GBC.In addition,TOP2A down-regulation significantly decreased the protein levels of phosphor(p)-PI3K,p-Akt,and p-mTOR.Conclusion:Our study demonstrates that TOP2A was overexpressed in GBC and associated with poor prognosis in GBC patients.TOP2A promotes GBC cell proliferation,migration,invasion,EMT process,and tumor growth through activating PI3K/Akt/mTOR signaling pathway,and may serve as a novel prognostic biomarker and therapeutic target for GBC.展开更多
Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the po...Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods: We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditionsin vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results: The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20vs. 0.44 ± 0.08,t = 6.67,P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04vs. 0.95 ± 0.10,t = 2.90,P < 0.05), and PI3K (0.40 ± 0.06vs. 0.63 ± 0.10,t = 3.42,P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02vs. 0.58 ± 0.03,t = 9.13,P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14vs. 1.27 ± 0.20,t = 4.12,P < 0.05), up-regulated p62 expression (1.10 ± 0.20vs. 0.77 ± 0.04,t = 2.80,P < 0.05), and up-regulated PI3K (0.54 ± 0.05vs. 0.40 ± 0.06,t = 3.11,P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05vs. 0.39 ± 0.02,t = 9.13,P < 0.05). A whole-genome microarray assay screened the differentially expressed geneHO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration ofHO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions: Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstancesin vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.展开更多
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal...[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.展开更多
AIM:To determine whether mitochondrial dysfunction resulting from high-fat diet is related to impairment of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt,also known as PKB) pathway. METHODS:Rat models...AIM:To determine whether mitochondrial dysfunction resulting from high-fat diet is related to impairment of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt,also known as PKB) pathway. METHODS:Rat models of nonalcoholic fatty liver were established by high-fat diet feeding. The expression of total and phosphorylated P13K and Akt proteins in hepatocytes was determined by Western blotting. Degree of fat accumulation in liver was measured by hepatic triglyceride. Mitochondrial number and size were determined using quantitative morphometric analysis under transmission electron microscope. The permeability of the outer mitochondrial membrane was assessed by determining the potential gradient across this membrane.RESULTS:After Wistar rats were fed with high-fat diet for 16 wk,their hepatocytes displayed an accumulation of fat (103.1 ± 12.6 vs 421.5 ± 19.7,P < 0.01),deformed mitochondria (9.0% ± 4.3% vs 83.0% ± 10.9%,P < 0.05),and a reduction in the mitochondrial membrane potential (389.385% ± 18.612% vs 249.121% ± 13.526%,P < 0.05). In addition,the expression of the phosphorylated P13K and Akt proteins in hepatocytes was reduced,as was the expression of the anti-apoptotic protein Bcl-2,while expression of the pro-apoptotic protein caspase-3 was increased. When animals were treated with pharmacological inhibitors of P13K or Akt,instead of high-fat diet,a similar pattern of hepatocellular fat accumulation,mitochondrial impairment,and change in the levels of PI3K,Akt,Bcl-2 was observed. CONCLUSION:High-fat diet appears to inhibit the PI3K/Akt signaling pathway,which may lead to hepa-tocellular injury through activation of the mitochondrial membrane pathway of apoptosis.展开更多
Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-rela...Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.展开更多
Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit l...Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α(PI3K/AKT/mTOR/HIF-1α)signaling pathway.Methods:Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models,with rapamycin and cyclophosphamide as positive controls.Carboxy methyl cellulose solutions of Scorpiones,Scolopendra and Gekko were administered intragastrically as 0.33,0.33,and 0.83 g/kg,respectively once daily for 21 days.Fluorescent expression were detected every 7 days after inoculation,and tumor growth curves were plotted.Immunohistochemistry was performed to determine CD31 and HIF-1αexpressions in tumor tissue and microvessel density(MVD)was analyzed.Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1αsignaling pathway-related proteins.Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor(bFGF),transforming growth factor-β1(TGF-β1)and vascular endothelial growth factor(VEGF)in mice.Results:Scorpiones,Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α(all P<0.01).Moreover,Scorpiones,Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase(p70S6K)(P<0.05 or P<0.01).In addition,they also decreased the expression of CD31,MVD,bFGF,TGF-β1 and VEGF compared with the model group(P<0.05 or P<0.01).Conclusion:Scorpiones,Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1αsignaling pathway.展开更多
Objective:To analyze the expression of phosphatidylinositol 3 kinase(PI3-K),protein kinase B(PKB)and glycogen synthase kinase 3 beta(GSK-3β)in skeletal muscle tissue of gestational diabetes mellitus(GDM).Methods:A to...Objective:To analyze the expression of phosphatidylinositol 3 kinase(PI3-K),protein kinase B(PKB)and glycogen synthase kinase 3 beta(GSK-3β)in skeletal muscle tissue of gestational diabetes mellitus(GDM).Methods:A total of 90 cases of pregnant women were divided into observation group and control group according to the occurrence of GDM with 45 cases in either,and the expression of PI3-K,PKB,GSK-3βmRNA expression in skeletal muscle tissue was compared between two groups.Results:The total PI3-K p85 protein was significantly higher in the observation group compared with the control group,the activity of PI3-K was lower than that of the latter;The total PKB,GSK-3βprotein in skeletal tissue had no significant difference between two groups,while the serine phosphorylation levels of PKB and GSK-3βwere significantly lower in observation group compared with the control group.Conclusions:The downregulation of PI3-K,PKB and GSK-3βin skeletal tissue of GDM caused by phosphorylation dysfunction of signaling molecules is the reason for insulin resistance and transporter function decline which lead to GDM.展开更多
BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechani...BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.展开更多
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
基金National Natural Science Foundation of China,No.81704059Scientific Research Project of Hebei Province Traditional Chinese Medicine Administration,No.2017130。
文摘BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.
基金National Key R&D Program of China:Underground Ecological Planting Technology and Base Establishment of Sharen (Fructus Amomi) in the forest (2017YFC1701102)West Yunnan University of Applied Sciences University-level Engineering Research Center projects:Characteristic Dai-Medicine Resource ERC of West Yunnan University of Apllied Science (2022KYPT0004)+3 种基金National Natural Science Foundation of China:Study on the symbiotic system of Sharen (Fructus Amomi)weevil pollination and its "push-pull" pollination mechanism (82260736)Yunnan key labotatory of southern medicine utilization:Major Science and Technology Special Plan of Yunnan Province (202102AA100020)Scientific and Technological Talents and Platform Plan of Yunnan Province (202105AG070011)
文摘OBJECTIVE:To investigate the antitumor effects of bornyl acetate(BA)isolated from Sharen(Fructus Amomi)in colorectal cancer(CRC)and the underlying mechanisms.METHODS:SW480 and HT29 cells were treated with increasing doses of BA in order to determine its antitumor effects in vitro.Cell viability,colony formation,cell cycle,and apoptosis as well as migration and invasion were assessed using various assays.In addition,the in vivo antitumor effects of BA were assessed using a xenograft mouse model.We then assessed the mechanism of action of BA by conducting pathway activator-mediated rescue experiments and assessed the protein levels by Western blot analysis.RESULTS:BA showed anti-CRC tumor activities in vitro by suppressing cell proliferation and colony formation,inducing apoptosis,blocking cell cycle,and inhibiting migration and invasion.These effects were mediated via suppression of the phosphatidylinositol-3-kinase/protein kinase B(PI3K/AKT)pathway.In the tumor xenograft experiment,BA was found to repress tumor growth in vivo with low toxicity.CONCLUSIONS:The results demonstrated that BA exerts antitumor effects by suppressing the PI3K/AKT pathway,with low toxicity.Thus,BA might be a potential novel therapeutic agent for CRC.
基金supported by National Natural Science Foundation of China(32072212)Multi-Year Research Grant of University of Macao(MYRG2018-00169-ICMS)+5 种基金Science and Technology Development Fund of Macao(FDCT)(0098/2020/A)MICINN supporting the Ramón y Cajal grant for M.A.Prieto(RYC-201722891)Jianbo Xiao(RYC2020-030365-I)Xunta de Galicia supporting the Axudas Conecta Peme,the IN852A 2018/58 Neuro Food Project,the program EXCELENCIA-ED431F 2020/12the pre-doctoral grants of P.García-Oliveira(ED481A-2019/295)to Ibero-American Program on Science and Technology(CYTED-AQUA-CIBUS,P317RT0003).
文摘Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.
文摘Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.
文摘Background:TopoisomeraseⅡalpha(TOP2A)has been reported to play a crucial role in the tumorigenesis of various cancer types.However,the biological role of TOP2A in gallbladder cancer(GBC)remains unknown.The current study aimed to explore the function and potential mechanism of TOP2A in GBC.Methods:Based on Gene Expression Profiling Interactive Analysis data,we found TOP2A was significantly up-regulated in GBC tissues and resulting in shorter overall survival.Quantitative real-time polymerase chain reaction and immunohistochemistry were conducted to detect the expression of TOP2A in 45 pairs of GBC tissues and adjacent non-tumor tissues.In vitro,cell proliferation,migration,and invasion ability were examined by cell counting kit-8 and transwell assay,respectively.Epithelial-mesenchymal transition(EMT)related and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)pathway-related markers were measured by Western blotting.Xenograft model assay was performed to evaluate the effect of TOP2A in vivo.Results:TOP2A was found up-regulated in GBC(tumor vs.normal,12.62 vs.0.34)and correlated with the late tumor node metastasis stage(P=0.0032),present of lymph node metastasis(P=0.0273),and poor prognosis in GBC patients(log-rank P=0.028).In vitro and in vivo assays showed that knockdown of TOP2A notably inhibited cell proliferation,migration,invasion,EMT process,and tumor growth in GBC.In addition,TOP2A down-regulation significantly decreased the protein levels of phosphor(p)-PI3K,p-Akt,and p-mTOR.Conclusion:Our study demonstrates that TOP2A was overexpressed in GBC and associated with poor prognosis in GBC patients.TOP2A promotes GBC cell proliferation,migration,invasion,EMT process,and tumor growth through activating PI3K/Akt/mTOR signaling pathway,and may serve as a novel prognostic biomarker and therapeutic target for GBC.
基金National Natural Science Foundation of China(No.81490533)。
文摘Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods: We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditionsin vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results: The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20vs. 0.44 ± 0.08,t = 6.67,P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04vs. 0.95 ± 0.10,t = 2.90,P < 0.05), and PI3K (0.40 ± 0.06vs. 0.63 ± 0.10,t = 3.42,P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02vs. 0.58 ± 0.03,t = 9.13,P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14vs. 1.27 ± 0.20,t = 4.12,P < 0.05), up-regulated p62 expression (1.10 ± 0.20vs. 0.77 ± 0.04,t = 2.80,P < 0.05), and up-regulated PI3K (0.54 ± 0.05vs. 0.40 ± 0.06,t = 3.11,P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05vs. 0.39 ± 0.02,t = 9.13,P < 0.05). A whole-genome microarray assay screened the differentially expressed geneHO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration ofHO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions: Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstancesin vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
基金Supported by National Natural Science Foundation of China(81760806)Project of Traditional Chinese Medicine Administration of Gansu Province(GZK-2019-28)Innovation Ability Improvement Project of Higher Education Institutions of Gansu Province(2019B-103)。
文摘[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein.
基金Supported by The Natural Science Foundation of Heilongjiang Province, No. 2005-13
文摘AIM:To determine whether mitochondrial dysfunction resulting from high-fat diet is related to impairment of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt,also known as PKB) pathway. METHODS:Rat models of nonalcoholic fatty liver were established by high-fat diet feeding. The expression of total and phosphorylated P13K and Akt proteins in hepatocytes was determined by Western blotting. Degree of fat accumulation in liver was measured by hepatic triglyceride. Mitochondrial number and size were determined using quantitative morphometric analysis under transmission electron microscope. The permeability of the outer mitochondrial membrane was assessed by determining the potential gradient across this membrane.RESULTS:After Wistar rats were fed with high-fat diet for 16 wk,their hepatocytes displayed an accumulation of fat (103.1 ± 12.6 vs 421.5 ± 19.7,P < 0.01),deformed mitochondria (9.0% ± 4.3% vs 83.0% ± 10.9%,P < 0.05),and a reduction in the mitochondrial membrane potential (389.385% ± 18.612% vs 249.121% ± 13.526%,P < 0.05). In addition,the expression of the phosphorylated P13K and Akt proteins in hepatocytes was reduced,as was the expression of the anti-apoptotic protein Bcl-2,while expression of the pro-apoptotic protein caspase-3 was increased. When animals were treated with pharmacological inhibitors of P13K or Akt,instead of high-fat diet,a similar pattern of hepatocellular fat accumulation,mitochondrial impairment,and change in the levels of PI3K,Akt,Bcl-2 was observed. CONCLUSION:High-fat diet appears to inhibit the PI3K/Akt signaling pathway,which may lead to hepa-tocellular injury through activation of the mitochondrial membrane pathway of apoptosis.
基金supported by intramural research funding of National Center for Complementary and Alternative Medicine(now is National Center for Complementary and Integrative Health),NIH,the US Department of Health and Human Services(to X.L.)and an operating grant(MOP 123279)from Canadian Institutes for Health Research(to Z.Y.)
文摘Our recent studies with cultured retinal pigment epithelium cells suggested that overexpression of interleukin 17 receptor C(IL-17RC),a phenomenon observed in peripheral blood and chorioretinal tissues with age-related macular degeneration(AMD),was associated with altered activation of phosphatidylinositide 3-kinase(PI3K),Akt,and glycogen synthase kinase 3(GSK3).We wondered whether or not altered PI3 K,Akt,and GSK3 activities could be detected in peripheral blood mononuclear cells(PBMC) obtained from AMD patients.In the patients' PBMC,absent or reduced serine-phosphorylation of GSK3α or GSK3β was observed,which was accompanied with increased phosphorylation of GSK3 substrates(e.g.CCAAT enhancer binding protein a,insulin receptor substrate 1,and TAU),indicative of enhanced GSK3 activation.In addition,decreased protein mass of PI3K85α and tyrosinephosphorylation of PI3K50α was present in PBMC of the AMD patients,suggesting impaired PI3 K activation.Moreover,abnormally lowered molecular weight forms of Akt and GSK3 were detected in PBMC of the AMD patients.These data demonstrate that despite the presence of high levels of IL-17 RC,Wnt-3a and vascular endothelial growth factor,the PI3K/Akt/GSK3 signaling pathway is insensitive to these stimuli in PBMC of the AMD patients.Thus,measurement of PI3K/Akt/GSK3 expression and activity in PBMC may serve as a surrogate biomarker for AMD.
基金Supported by the Special Scientific Research Project of the Chinese Medicine Industry of the State Administration of Traditional Chinese Medicine of China(No.201307006)National Natural Science Foundation of China(No.82104656,82004179,82074405)Fundamental Research Funds for the Central Public Welfare Research Institutes(No.ZZ14-YQ-013,ZZ15-YQ-024)。
文摘Objective:To investigate whether Buthus martensii karsch(Scorpiones),Scolopendra subspinipes mutilans L.Koch(Scolopendra)and Gekko gecko Linnaeus(Gekko)could ameliorate the hypoxic tumor microenvironment and inhibit lung cancer growth and metastasis by regulating phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin/hypoxia-inducible factor-1α(PI3K/AKT/mTOR/HIF-1α)signaling pathway.Methods:Male C57BL/6J mice were inoculated with luciferase labeled LL/2-luc-M38 cell suspension to develop lung cancer models,with rapamycin and cyclophosphamide as positive controls.Carboxy methyl cellulose solutions of Scorpiones,Scolopendra and Gekko were administered intragastrically as 0.33,0.33,and 0.83 g/kg,respectively once daily for 21 days.Fluorescent expression were detected every 7 days after inoculation,and tumor growth curves were plotted.Immunohistochemistry was performed to determine CD31 and HIF-1αexpressions in tumor tissue and microvessel density(MVD)was analyzed.Western blot was performed to detect the expression of PI3K/AKT/mTOR/HIF-1αsignaling pathway-related proteins.Enzyme-linked immunosorbent assay was performed to detect serum basic fibroblast growth factor(bFGF),transforming growth factor-β1(TGF-β1)and vascular endothelial growth factor(VEGF)in mice.Results:Scorpiones,Scolopendra and Gekko prolonged the survival time and inhibited lung cancer metastasis and expression of HIF-1α(all P<0.01).Moreover,Scorpiones,Scolopendra and Gekko inhibited the phosphorylation of AKT and ribosomal protein S6 kinase(p70S6K)(P<0.05 or P<0.01).In addition,they also decreased the expression of CD31,MVD,bFGF,TGF-β1 and VEGF compared with the model group(P<0.05 or P<0.01).Conclusion:Scorpiones,Scolopendra and Gekko all showed beneficial effects on lung cancer by ameliorating the hypoxic tumor microenvironment via PI3K/AKT/mTOR/HIF-1αsignaling pathway.
基金supported by Medical Fund of Zhejiang Province(No.2013KYA207)Shaoxing Science and Technology Bureau Program(No.2011A23013 and No.2013B70079)
文摘Objective:To analyze the expression of phosphatidylinositol 3 kinase(PI3-K),protein kinase B(PKB)and glycogen synthase kinase 3 beta(GSK-3β)in skeletal muscle tissue of gestational diabetes mellitus(GDM).Methods:A total of 90 cases of pregnant women were divided into observation group and control group according to the occurrence of GDM with 45 cases in either,and the expression of PI3-K,PKB,GSK-3βmRNA expression in skeletal muscle tissue was compared between two groups.Results:The total PI3-K p85 protein was significantly higher in the observation group compared with the control group,the activity of PI3-K was lower than that of the latter;The total PKB,GSK-3βprotein in skeletal tissue had no significant difference between two groups,while the serine phosphorylation levels of PKB and GSK-3βwere significantly lower in observation group compared with the control group.Conclusions:The downregulation of PI3-K,PKB and GSK-3βin skeletal tissue of GDM caused by phosphorylation dysfunction of signaling molecules is the reason for insulin resistance and transporter function decline which lead to GDM.
基金Supported by the Key Program of Shandong Province,China,No.2016CYJS08A01-6.
文摘BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.