期刊文献+
共找到1,585篇文章
< 1 2 80 >
每页显示 20 50 100
In vitro corrosion and biocompatibility of phosphating modified WE43 magnesium alloy 被引量:5
1
作者 叶成红 奚廷斐 +2 位作者 郑玉峰 王淑琴 李扬德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期996-1001,共6页
Phospahting coated WE43 magnesium alloy was prepared by an immersion method. The microstructure, corrosion resistance and biocompatibility of the coated alloy were investigated. Scanning electron microscopy (SEM) an... Phospahting coated WE43 magnesium alloy was prepared by an immersion method. The microstructure, corrosion resistance and biocompatibility of the coated alloy were investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to examine the microstructure and the composition of the coated alloy. The corrosion resistance was studied by means of potentiodynamic polarization method and the biocompatibility of the surface modified WE43 alloy was evaluated by (3-(4,5)-Dimethylthiazol-2, yl)-2,5-diphenyltetrazolium bromide (MTT) and hemolysis test. The results show that the phosphating coating can enhance the corrosion resistance of WE43 alloy and can be a good candidate to increase the biocompatibility of WE43 alloy. 展开更多
关键词 magnesium alloy phosphating coating corrosion resistance BIOCOMPATIBILITY
下载PDF
Self-healing mechanism of composite coatings obtained by phosphating and silicate sol post-sealing 被引量:8
2
作者 林碧兰 卢锦堂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2723-2728,共6页
Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratch... Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratched and then exposed to the neutral salt spray(NSS) chamber for different time. The microstructure and chemical compositions of the scratches were studied using SEM and EDS. And the non-scratched coated samples were compared. The self-healing mechanism of the composite coatings was discussed. The results show that during corrosion, the self-healing ions in composite coatings dissolve, diffuse and transfer to the scratches or the defects, and then recombine with Zn2+ to form insoluble compound, which deposits and covers the exposed zinc. The corrosion products on the scratches contain silicon, phosphorous, oxygen, chloride and zinc, and they are compact, fine, needle and flake, effectively inhibiting the corrosion formation and expansion of the exposed zinc layer. The composite coatings have good self-healing ability. 展开更多
关键词 corrosion SELF-HEALING phosphate coatings SILICATE zinc
下载PDF
Effects of Hydroxylamine Sulfate and Sodium Nitrite on Microstructure and Friction Behavior of Zinc Phosphating Coating on High Carbon Steel 被引量:1
3
作者 许育东 齐三 +5 位作者 王雷 石敏 丁宁 庞志成 汪泉 彭旭东 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第2期197-202,I0002,共7页
Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found ... Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found that the phosphating coatings are mainly composed of hopeite Zn3Fe(PO4)2.4H2O and phosphophyllite Zn2Fe(PO4)2.4H2O. The microstructural changes of the phosphate coating, as a function of phosphating time, were evaluated by scanning elec- tron microscopy. Four-ball friction experiments reveal that hydroxylamine sulfate instead of sodium nitrite can effectively reduce the friction coefficient of lubricated phosphating coat- ing. Therefore, it may be expected that HAS will be widely used as a fast and ECO-friendly accelerator in phosphate industry. 展开更多
关键词 Hydroxylamine sulfate ACCELERATOR Phosphate coating FRICTION
下载PDF
Zinc phosphating of 6061-Al alloy using REN as additive 被引量:5
4
作者 张圣麟 张晓麟 张明明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期110-114,共5页
Zinc phosphate coating formed on 6061-A1 alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating ... Zinc phosphate coating formed on 6061-A1 alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating solutions containing different concentrations of Rare Earth Nitrate (REN). REN, which acted as an accelerator in the phosphating solution, could catalyze the surface reaction and accelerate the phosphating process. REN mainly enabled the P in the phosphate coating to exist in the form of PO4^3- and promoted the hydrolysis of phosphatic acid in a liquid layer at the cathodes. This resulted in the evolution of H2 at the cathodes, which increased the local pH value and in turn drove the precipitation of the phosphate coating. Additionally, REN was adsorbed on the surface of the aluminum substrates to form a gel during the phosphating process. These gel particles were good crystal seeds, which helped to form phosphate crystal nuclei and possess the function of a nucleation agent that could decrease the phosphate crystal size. The corrosion resistance of the formed zinc phosphate coatings was improved. 展开更多
关键词 Rare Earth Nitrate (REN) phosphate coating aluminum alloy ACCELERATOR nucleation agent
下载PDF
Composition and Performance of the Composite Coatings Obtained by Phosphating and Cerium Nitrate Post-Sealing on Galvanized Steel 被引量:4
5
作者 林碧兰 卢锦堂 +1 位作者 孔纲 刘军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期461-464,共4页
To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings ... To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and neutral salt spray (NSS) tests. The results show that after post-sealing the phosphated HDG samples with cerium nitrate solution, the pores among the zinc phosphate crystals are sealed by the compounds containing phosphorus, oxygen and cerium; the zinc phosphate crystals are covered by the flocculent cerium compounds; and the continuous composite coatings are formed on HDG steel. The corrosion resistance of the composite coatings, which increases with the increase in phosphating time and cerium nitrate post-sealing time, is far higher than that of the single phosphate coatings. The composite coatings with the optimal corrosion resistance are obtained for phosphating 300 s and post-sealing 300 s; and the corrosion resistance is more outstanding than that of the chromate coatings. 展开更多
关键词 galvanized steel phosphate coatings rare earths corrosion
下载PDF
Self-healing Performance of Composite Coatings Prepared by Phosphating and Cerium Nitrate Post-sealing 被引量:3
6
作者 林碧兰 LU Jintang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期813-817,共5页
The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositi... The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositions of the scratches were investigated using SEM and EDS. The phases of the corrosion products were examined through XRD. The self-healing mechanism of the composite coatings was discussed. The experimental results show that the composite coatings have an excellent corrosion resistance. The corrosion products increase with corrosion time and finally cover the whole scratch. They contain phosphorous, cerium, oxygen, chloride and zinc, and are fine needle and exceedingly compact. The composite coatings are favorable self-healing. During corrosion, the self-healing ions such as Ce3+, Ce4+, PO43-, Zn2+ in the composite coatings were dissolved, migrated, recombined, and covered the exposed zinc, impeding zinc corrosion. The self-healing process of the scratches on the composite coatings can be divided into three stages, about 2 h, 4 h, and 24 h, respectively. 展开更多
关键词 zinc phosphate coating SELF-HEALING corrosion resistance cerium nitrate
下载PDF
Study on phosphating treatment of aluminum alloy:role of yttrium oxide 被引量:3
7
作者 张圣麟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期469-473,共5页
Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (... Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s. 展开更多
关键词 yttrium oxide zinc phosphate coating aluminum alloy nucleation agent ACCELERATOR rare earths
下载PDF
Study on Phosphating by Ultrasonic Wave at Room Temperature for Sintered NdFeB Magnet 被引量:2
8
作者 Sun Shuo Zhang Youping +2 位作者 Yu Xintong Wang Yong Lou Guiyan 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第S1期260-262,共3页
The corrosion behavior of a NdFeB magnet obtained at room temperature,with and without ultrasonic were investigated.The corrosion resistance was investigated by corrosion immersion tests in 3 wt%neutral NaCl solutions... The corrosion behavior of a NdFeB magnet obtained at room temperature,with and without ultrasonic were investigated.The corrosion resistance was investigated by corrosion immersion tests in 3 wt%neutral NaCl solutions,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS).The morphology of the conversion coatings on NdFeB surface were analyzed by scanning electron microscopy(SEM).And the forming mechanism of coatings was studied by potential-time curves.The tests of corrosion resistances show that the combination of phosphating treatment with ultrasonic will further improve the corrosion resistance of the NdFeB.The SEM also confirms that phosphating coating under ultrasonic is more homogeneous and compact. 展开更多
关键词 sintered NDFEB MAGNET phosphating ULTRASONIC WAVE corrosion resistance
原文传递
Phosphating-induced charge transfer on CoO/CoP interface for alkaline H_(2)evolution 被引量:2
9
作者 Qian Li Yuchao Wang +10 位作者 Jian Zeng Qiumei Wu Qichen Wang Lian Sun Liang Xu Tong Ye Xin Zhao Lei Chen Zhiyan Chen Limiao Chen Yongpeng Lei 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第11期3355-3358,共4页
Designing non-noble metal electrocatalysts toward alkaline hydrogen evolution reaction(HER)with high performance at a large current density is urgent.Herein,a CoO/CoP heterostructure catalyst(termed POZ)was designed b... Designing non-noble metal electrocatalysts toward alkaline hydrogen evolution reaction(HER)with high performance at a large current density is urgent.Herein,a CoO/CoP heterostructure catalyst(termed POZ)was designed by a phosphating strategy.The strong electron transfer on the interface of CoO/CoP was experimentally and theoretically proven.POZ showed a low overpotential of 236 mV at 400 mA/cm^(2),which was 249 mV lower than non-phosphated sample.It also exhibited a remarkable solar-to-hydrogen conversion efficiency of 10.5%.In this work,the construction of CoO/CoP interface realized by a simple phosphating strategy could provide an important reference to boost the HER performance on those materials not merely metal oxides. 展开更多
关键词 CoO/CoP heterostructure phosphating H_(2)evolution reaction Alkaline media Solar-driven water splitting
原文传递
Ruthenium nanoclusters anchored on cobalt phosphide hollow microspheres by green phosphating process for full water splitting in acidic electrolyte
10
作者 Yunqie Deng Linjing Yang +5 位作者 Yakun Wang Lili Zeng Jiayuan Yu Bo Chen Xiaoli Zhang Weijia Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期511-515,共5页
Transition metal phosphide(TMP) based electrocatalysts possessing special crystal and electronic structures attract broad attention in the field of electrocatalysis.Immense effort is made to optimize TMP catalysts aim... Transition metal phosphide(TMP) based electrocatalysts possessing special crystal and electronic structures attract broad attention in the field of electrocatalysis.Immense effort is made to optimize TMP catalysts aiming to satisfy the electrochemical catalysis performance.In this work,an environmentally friendly in situ green phosphating strategy and spatial limiting effect of the RuCo precursor is employed to fabricate the ruthenium nanoclusters anchored on cobalt phosphide hollow microspheres(Ru NCs/Co_(2)P HMs).The obtained Ru NCs/Co_(2)P HMs electrocatalysts exhibit high hydrogen evolution reaction(HER) activity at wide pH ranges,which require an overpotential of 77 mV to achieve the current density of 10 mA/cm^(2) in 0.5 mol/L H_(2)SO_(4) and 118 mV in 1.0 mol/L KOH.Besides,the multifunctional Ru NCs/Co_(2)P HMs exhibit good oxygen evolution reaction(OER) activity with an overpotential of 197 mV to reach the current density of 10 mA/cm^(2) in 0.5 mol/L H_(2)SO_(4),which is below that of the commercial RuO_(2) electrocatalyst(248 mV).A two-electrode electrolyzer is assembled as well,in acid electrolyte,it achieves a current density of 10 mA/cm^(2) at a voltage of 1.53 V,which is superior to that of the benchmark of precious metal-based electrolyzer(1.58 V). 展开更多
关键词 Green phosphating Cobalt phosphide Ruthenium nanocluster Hydrogen evolution reaction Water splitting
原文传递
Novel interface engineering of LDH-based materials on Mg alloy for efficient photocatalytic systems considering the geometrical linearity of condensed phosphates 被引量:3
11
作者 Mosab Kaseem Ananda Repycha Safira Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期267-280,共14页
This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'g... This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications. 展开更多
关键词 Plasma electrolysis Layered Double Hydroxide Condensed phosphates Adsorption capacity Photocatalytic efficiency
下载PDF
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries 被引量:2
12
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 Lithium iron phosphate battery Safety valve Thermal runaway Gas venting behavior Thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Predicting the Degradability of Bioceramics through a DFT-based Descriptor
13
作者 CHEN Mengjie WANG Qianqian +1 位作者 WU Chengtie HUANG Jian 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第10期1175-1181,I0007-I0009,共10页
Bioceramics have attracted extensive attention for bone defect repair due to their excellent bioactivity and degradability.However,challenges remain in matching the rate between bioceramic degradation and new bone for... Bioceramics have attracted extensive attention for bone defect repair due to their excellent bioactivity and degradability.However,challenges remain in matching the rate between bioceramic degradation and new bone formation,necessitating a deeper understanding of their degradation properties.In this study,density functional theory(DFT)calculations was employed to explore the structural and electronic characteristics of silicate bioceramics.These findings reveal a linear correlation between the maximum isosurface value of the valence band maximum(VBM_(Fmax))and the degradability of silicate bioceramics.This correlation was subsequently validated through degradation experiments.Furthermore,the investigation on phosphate bioceramics demonstrates the potential of this descriptor in predicting the degradability of a broader range of bioceramics.This discovery offers valuable insights into the degradation mechanism of bioceramics and holds promise for accelerating the design and development of bioceramics with controllable degradation. 展开更多
关键词 BIOCERAMICS SILICATE PHOSPHATE first PRINCIPLES degradation
下载PDF
Efficient Removal of Phosphate from Aqueous Solutions Using Corundum-hollow-spheres Supported Caclined Hydrotalcite Porous Thin Films
14
作者 刘云才 ZHU Chen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期44-49,共6页
Phosphate was removed from aqueous environment by corundum-hollow-spheres supported caclined hydrotalcite (cHT) thin films. Mg-Al-CO3 hydrotalcite (HT) thin films were deposited on corundumhollow-sphere substrates by ... Phosphate was removed from aqueous environment by corundum-hollow-spheres supported caclined hydrotalcite (cHT) thin films. Mg-Al-CO3 hydrotalcite (HT) thin films were deposited on corundumhollow-sphere substrates by hydrothermal homogeneous precipitation at 120℃for 30-240 min and cHT thin films were obtained by annealing of the HT thin films at 500℃for 180 min. Their crystal phase, morphology and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).The results show that homogeneous, well-crystallized and hierarchical flower-like thin films were deposited firmly on the surface of the corundum. The mechanism of nucleation and growth of the HT thin films was fitted well with the anion coordination polyhedron growth unit model. To determine the absorption of phosphate by this adsorbent, different bed depth (10-30 cm) and flow rate (1.0-3.0 m L/min) were examined by column experiments. The highest removal efficiency of phosphate amounted to 98.5%under optimum condition (pH=7.2). The adsorption capacity increased as the bed depth increased and decreased as the flow rate increased. 展开更多
关键词 adsorption PHOSPHATE HYDROTALCITE corundum-hollow-sphere hydrothermal homogeneous precipitation thermal anneal
下载PDF
Gadolinium-doped injectable magnesium-calcium phosphate bone cements for noninvasive visualization
15
作者 Polina A.Krokhicheva Margarita A.Goldberg +12 位作者 Alexander S.Fomin Dinara R.Khayrutdinova Olga S.Antonova Margarita A.Sadovnikova Ivan V.Mikheev Aleksander V.Leonov Ekaterina M.Merzlyak Daria A.Kovalishina Suraya A.Akhmedova Natalia S.Sergeeva Marat R.Gafurov Sergey M.Barinov Vladimir S.Komlev 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3698-3716,共19页
Injectable bone cements are used in minimally invasive surgical techniques including vertebroplasty and kyphoplasty.This work is devoted to the development of magnesium-calcium phosphate cements(MCPCs)doped with gadol... Injectable bone cements are used in minimally invasive surgical techniques including vertebroplasty and kyphoplasty.This work is devoted to the development of magnesium-calcium phosphate cements(MCPCs)doped with gadolinium ions(Gd^(3+))for bone defect repair.Interaction between cement powders and a cement liquid resulted in the formation of newberyite and brushite phases,which gave mechanical strength up to 17 MPa without a thermal effect.The introduction of Gd3+into the lattice was confirmed by electron paramagnetic resonance spectroscopy;the doping increased injectivity while giving rise to antibacterial properties against Escherichia coli.Assays of the cement samples soaking in Kokubo’s simulated body fluid revealed the formation of calcium phosphate coatings on the cements’surface.The cements manifested biocompatibility with the MG-63 cell line and significantly enhanced contrast when Gd-MCPC was placed into a bone defect and examined by X-ray micro-computed tomography.For the first time,visualization of a Gd-doped cement material was achieved in a model of a bone defect analyzed by MRI. 展开更多
关键词 Magnesium-calcium phosphate cement GADOLINIUM INJECTIVITY Antibacterial properties CYTOCOMPATIBILITY
下载PDF
Effect of Fluoride on the Ion-association of Calcium Phosphate and Crystallization of Hydroxyapatite
16
作者 宋昊月 CAI Meng +1 位作者 袁萍 邹朝勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期831-838,共8页
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t... Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride. 展开更多
关键词 CRYSTALLIZATION amorphous calcium phosphate HYDROXYAPATITE FLUORIDE
下载PDF
Surface-neutralization engineered NiCo-LDH/phosphate hetero-sheets toward robust oxygen evolution reaction
17
作者 Shunfa Zhou Yuxuan Liu +4 位作者 Jing Li Zhao Liu Jiawei Shi Liyuan Fan Weiwei Cai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1151-1158,共8页
Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts hav... Developing highly active oxygen evolution reaction(OER)electrocatalysts with robust durability is essential in producing high-purity hydrogen through water electrolysis.Layered double hydroxide(LDH)based catalysts have demonstrated efficient catalytic performance toward the relatively sluggish OER.By considering the promotion effect of phosphate(Pi)on proton transfer,herein,a facile phosphate acid(PA)surface-neutralization strategy is developed to in-situ construct NiCo-LDH/NiCoPi hetero-sheets toward OER catalysis.OER activity of NiCoLDH is significantly boosted due to the proton promotion effect and the electronic modulation effect of NiCoPi.As a result,the facilely prepared NiCo-LDH/NiCoPi catalyst displays superior OER catalytic activity with a low overpotential of 300 mV to deliver 100 mA cm^(-2)OER and a Tafel slope of 73 mV dec^(-1).Furthermore,no visible activity decay is detected after a 200-h continuous OER operation.The present work,therefore,provides a promising strategy to exploit robust OER electrocatalysts for commercial water electrolysers. 展开更多
关键词 Oxygen evolution reaction PHOSPHATE Layered double hydroxide Hetero-sheets Stability
下载PDF
Enhancing sustainability in phosphate ore processing:Performance of frying oil as alternative flotation collector for carbonate removal
18
作者 Asmae El-bahi Yassine Taha +2 位作者 Yassine Ait-Khouia Abdellatif Elghali Mostafa Benzaazoua 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期557-571,共15页
Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector design... Recycling waste frying oils for the synthesis of flotation reagents presents a promising avenue for sustainable waste management.Moreover,it offers a cost-effective solution for crafting a specialized collector designed to efficiently remove carbonates and enhance phosphate enrichment in froth flotation processes.This study focuses on the synthesis of an anionic collector using the saponification reaction of a frying oil sample,subsequently applied to the flotation of calcite and dolomite.To elucidate the adsorption mechanisms of the frying oil collector(FrOC)and sodium oleate,a reference collector,on fluorapatite,calcite,dolomite,and quartz surfaces,comprehensive experiments were conducted,including zeta potential measurements and Fourier transform infrared spectroscopy.Results revealed diverse adsorption affinities of the molecules towards these minerals.To assess the practical performance of the collector,flotation tests were conducted using a natural phosphate ore mixture,employing a BoxBehnken experimental design.Notably,under optimized conditions(pH 9,1000 g/t of FrOC,3.5 min of conditioning,and 6 min of flotation),FrOC exhibited excellent performance,with calcite and dolomite recoveries exceeding 80%,while apatite recovery in the concentrate fraction remained below 10%.This work exemplifies both circular economy practices and the distinctive approach to sustainable mineral processing. 展开更多
关键词 Frying oils recycling Phosphate beneficiation Flotation separation Green surfactants SUSTAINABILITY
下载PDF
In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites
19
作者 Peng Zhang Fukuan Li +6 位作者 Mingming He Silu Huo Xueli Zhang Benqiang Cen Dezhi Fang Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期126-137,共12页
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev... Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption. 展开更多
关键词 Electro-assisted adsorption ELECTROSORPTION Phosphate removal Active centers MOF-derived carbon
下载PDF
Preparation and interface state of phosphate tailing-based geopolymers
20
作者 ZHANG Shou-xun XIE Xian +4 位作者 XIE Rui-qi TONG Xiong WU Yu-yao LI Jia-wen LI Yue 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1900-1914,共15页
The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop... The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings. 展开更多
关键词 phosphate tailing GEOPOLYMER interface state toxicity leaching
下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部