Uncontrolled proliferation is a hallmark of cancer cells,yet the molecular mechanisms that contribute to this proliferation are unclear.Therapeutic treatment of cancer is suboptimal in many cases,with no accurate inde...Uncontrolled proliferation is a hallmark of cancer cells,yet the molecular mechanisms that contribute to this proliferation are unclear.Therapeutic treatment of cancer is suboptimal in many cases,with no accurate index by which to evaluate the success of treatment or patient prognosis.In this study,we explored the protein levels of nuclear phospho-eIF4E in acute myeloid leukemia(AML)cell lines and primary leukemia samples by Western blot and immunofluorescence and as well analyzed transcriptomes by RNA-seq.We found nuclear phospho-eIF4E,an exporter of oncogenic mRNAs,to be abundant in AML.Further,nuclear phospho-eIF4E abundance was significantly associated with tumor burden as well as the response of AML patients to chemotherapy.The results demonstrate“massive clustering and export of oncogenic mRNAs to the translation machinery”by highly abundant RNA-nuclear phospho-eIF4E bodies.This is an efficient mechanism that may drive the proliferation of cancer cells.Herein,nuclear phospho-eIF4E bodies were identified as potential markers of AML,which may be useful for prognosis and as targets for cancer therapy.展开更多
The treatment of non-small cell lung cancer(NSCLC)remains a challenge due to tumor evolution during anti-angiogenesis therapies,in which the mechanism of vascular mimicry(VM)is believed to result in ineffective treatm...The treatment of non-small cell lung cancer(NSCLC)remains a challenge due to tumor evolution during anti-angiogenesis therapies,in which the mechanism of vascular mimicry(VM)is believed to result in ineffective treatment[1].To conquer this challenge,substantial effort has recently been devoted to seeking out natural compounds on account of their multitarget actions.As a traditional herbal medicine,platycodin D(PD)is the major bioactive monomer derived from Platycodon grandiflorum(P.grandiflorum)and is used as an expectorant for pulmonary disease in Asia[2].展开更多
Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions...Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.展开更多
Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated t...Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.81600129)the Science and Technology Project of Hangzhou(Grant No.2016Z01)+1 种基金the Science and Technology Project of Hangzhou(Grant No.2017A11)Natural Science Foundation of Zhejiang Province(Grant No.LY21H080001).
文摘Uncontrolled proliferation is a hallmark of cancer cells,yet the molecular mechanisms that contribute to this proliferation are unclear.Therapeutic treatment of cancer is suboptimal in many cases,with no accurate index by which to evaluate the success of treatment or patient prognosis.In this study,we explored the protein levels of nuclear phospho-eIF4E in acute myeloid leukemia(AML)cell lines and primary leukemia samples by Western blot and immunofluorescence and as well analyzed transcriptomes by RNA-seq.We found nuclear phospho-eIF4E,an exporter of oncogenic mRNAs,to be abundant in AML.Further,nuclear phospho-eIF4E abundance was significantly associated with tumor burden as well as the response of AML patients to chemotherapy.The results demonstrate“massive clustering and export of oncogenic mRNAs to the translation machinery”by highly abundant RNA-nuclear phospho-eIF4E bodies.This is an efficient mechanism that may drive the proliferation of cancer cells.Herein,nuclear phospho-eIF4E bodies were identified as potential markers of AML,which may be useful for prognosis and as targets for cancer therapy.
基金funded by the National Natural Science Foundation of China(Grant Nos.:82004081 and 52073145)the National Natural Science Foundation of Nanjing University of Chinese Medicine,China(Grant No.:NZY82004081).
文摘The treatment of non-small cell lung cancer(NSCLC)remains a challenge due to tumor evolution during anti-angiogenesis therapies,in which the mechanism of vascular mimicry(VM)is believed to result in ineffective treatment[1].To conquer this challenge,substantial effort has recently been devoted to seeking out natural compounds on account of their multitarget actions.As a traditional herbal medicine,platycodin D(PD)is the major bioactive monomer derived from Platycodon grandiflorum(P.grandiflorum)and is used as an expectorant for pulmonary disease in Asia[2].
基金supported by grants from the National Key R&D Program of China (2023YFD1201300)CAAS Agricultural Science and Technology Innovation Project
文摘Soybean is a broadly popular and extensively cultivated crop,however,many high-yield and high-quality varieties require specific growth conditions,restricting their widespread adoption.The appropriate light conditions and photoperiod must be attained for these varieties to thrive in new environments.In this study,we employed CRISPR/Cas9 to design two sgRNAs aimed at knocking out the maturity-related gene E4 in a major American soybean variety called''Jack'',which belongs to maturity group MGII.E4 gene is primarily involved in the photoperiodic flowering and maturity in soybean,making it an ideal candidate for genetic manipulation.We successfully obtained 1 homozygous E4-SG1 mutant type with 1-bp insertion,and 4 homozygous E4-SG2 mutants type with 2-bp deletion,7-bp deletion,61-bp deletion,and 1-bp insertion,respectively.The homozygous e4 mutant plants contained early termination codons devoid of transgenic elements.Additionally,no potential offtarget sites of the E4 gene were detected.A comparative analysis revealed that,unlike the wild-type,the maturity time of homozygous e4 mutants was early under both short-day and long-day conditions.These mutants offer novel germplasm resources that may be used to modify the photoperiod sensitivity and maturity of soybean,enhancing its adaptability to high-latitude regions.
基金supported by grants from the Scientist Training Program of BAAFS (Grant No.JKZX202406)the Innovation and Capacity-Building Project of BAAFS (Grant No.KJCX20230221)+2 种基金Collaborative innovation program of the Beijing Vegetable Research Center (Grant No.XTCX202302)the National Natural Science Foundation of China (Grant No.32072567)the China Agriculture Research System of MOF and MARA (Grant No.CARS-A03)。
文摘Turnip mosaic virus(TuMV)constitutes one of the primary diseases affecting Brassica rapa,severely impacting its production and resulting in crop failures in various regions worldwide.Recent research has demonstrated the significance of plant translation initiation factors,specifically the eIF4E and eIF4G family genes,as essential recessive disease resistance genes.In our study,we conducted evolutionary and gene expression studies,leading us to identify e IF(iso)4E.c as a potential TuMV-resistant gene.Leveraging CRISPR/Cas9 technology,we obtained mutant B.rapa plants with edited eIF(iso)4E.c gene.We confirmed eIF(iso)4E.c confers resistance against TuMV through phenotypic observations and virus content evaluations.Furthermore,we employed ribosome profiling assays on eif(iso)4e.c mutant seedlings to unravel the translation landscape in response to TuMV.Interestingly,we observed a moderate correlation between the fold changes in gene expression at the transcriptional and translational levels(R^(2)=0.729).Comparative analysis of ribosome profiling and RNA-seq data revealed that plant-pathogen interaction,and MAPK signaling pathway-plant pathways were involved in eIF(iso)4E.c-mediated TuMV resistance.Further analysis revealed that sequence features,coding sequence length,and normalized minimal free energy,influenced the translation efficiency of genes.Our study highlights that the loss of e IF(iso)4E.c can result in a highly intricate translation mechanism,acting synergistically with transcription to confer resistance against TuMV.