After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparatio...After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparation of calcium hydrogen phosphate for feed;2) preparation of calcium phosphate. A ready-to-use calcium oxide slurry was used to recover P from phosphogypsum leachate at a slurry concentration of 20% and a quantitative link between calcium to phosphorus ratio and fixation rate was fitted by mixed use batch experiments, reaction kinetics and thermodynamics, and theoretical calculations were used to demonstrate that phosphorus cannot be completely reused in the preparation of calcium hydrogen phosphate. The findings demonstrated that: a) the residual phosphorus concentration was in the range of 1300 - 1500 mg/L for the preparation of type I feed grade calcium hydrogen phosphate from phosphogypsum leachate;b) the P removal effect could reach 99.99% for the preparation of calcium phosphate from phosphogypsum using the theoretical equation: fixation rate = 87.91 - 10.96(Ca/P) + 3.22(Ca/P)<sup>2</sup> (R<sup>2</sup> = 0.9954);c) The procedure follows the suggested secondary kinetics, and according to the Freundlich isothermal model, the reaction process is under the control of the chemical reaction, with a reaction index of 0.7605. This study can be used as a theoretical guide for the recovery of P from phosphogypsum leachate, the preparation of products to bring about economic by-products, and the purification of wastewater for reuse.展开更多
Electrolytic manganese residue leachate(EMRL)contains plenty of Mn^(2+) and NH_(4)^(+)-N,and phosphogypsum leachate(PGL)contains large amounts of PO_(4)^(3-)-P and F^(-).Traditional methods of EMRL and PGL discharge c...Electrolytic manganese residue leachate(EMRL)contains plenty of Mn^(2+) and NH_(4)^(+)-N,and phosphogypsum leachate(PGL)contains large amounts of PO_(4)^(3-)-P and F^(-).Traditional methods of EMRL and PGL discharge could seriously damage the ecological environment.In this study,an innovative method for cooperative removal Mn^(2+),NH_(4)^(+)-N,PO_(4)^(3-)-P,F^(-)from PG and POFT was studied.The result showed that Mn^(2+),PO_(4)^(3-)-P and F^(-)were mainly removed in forms of Mg_(3)Si_(4)O_(10)(OH)_(2),Mn_(3)O_(4),Mn_(3)(PO_(4))_(2),Mg_(3)(PO_(4))_(2),CaSO_(4)·2H_(2)O,MnF_(2),MnOOH and Ca_(2)P_(2)O_(7)·2H_(2)O,when LG-MgO was used to adjust the pH value of the system to 9.5,and the volume ratio of EMRL and PGL was 1:4,as well as reaction for 1 h at 25℃.NH_(4)^(+)-N was mainly removed by struvite precipitate,when the molar ratio of N:Mg:P was 1:3:2.4.The concentrations of Mn^(2+),NH_(4)^(+)-N and F^(-)were lower than the integrated wastewater discharge standard.The concentration of PO_(4)^(3-)-P decreased from 254.20 mg/L to 3.21 mg/L.This study provided a new method for EMRL and PGL cooperative harmless treatment.展开更多
In this study,vine pruning wastes(VPW)were used as raw material to develop an alternative activated carbon(VPW-AC)for adsorbing and concentrating rare earth elements cerium(Ce(Ⅲ))and lanthanum(La(Ⅲ))from synthetic a...In this study,vine pruning wastes(VPW)were used as raw material to develop an alternative activated carbon(VPW-AC)for adsorbing and concentrating rare earth elements cerium(Ce(Ⅲ))and lanthanum(La(Ⅲ))from synthetic and real leachate solutions.The Ce and La adsorption studies evaluated the effects of VPW-AC dosage,pH,contact time,rare earth initial concentration,and temperature.The VPW-AC adsorbent was subjected to many physicochemical characterization methods to correlate and understand its adsorptive performance.The characterization data indicate a carbonaceous adsorbent with a specific surface area of 467 m^(2)/g.Zeta potential indicates a material with a negatively charged surface at a pH higher than 3.1,which is extremely beneficial to cations removal.For both rare earths elements(REEs),the adsorption capacity increases with the increase of the pH,reaching its maximum at pH 4-6.The kinetic data are well fitted by Avrami-fractional o rder,while the Liu model agreeably fits equilibrium data.The maximum adsorption capacities for Ce(Ⅲ)and La(Ⅲ)are 48.45 and 53.65 mg/g at 298 K,respectively.The thermodynamic studies suggest that the adsorption process is favorable,spontaneous,and exothermic for both REEs.Pore filling,surface complexation,and ion exchange are the dominant mechanisms.Finally,the VPW-AC was subjected to the recovery of REEs from real phosphogypsum leachate,and it is proved that it can be successfully used to recover REEs in a real process.展开更多
文摘After washing and curing, P is transported from the phosphogypsum to the leachate during the phosphogypsum detoxification process, providing two ideas for phosphorus recovery from phosphogypsum leachate: 1) preparation of calcium hydrogen phosphate for feed;2) preparation of calcium phosphate. A ready-to-use calcium oxide slurry was used to recover P from phosphogypsum leachate at a slurry concentration of 20% and a quantitative link between calcium to phosphorus ratio and fixation rate was fitted by mixed use batch experiments, reaction kinetics and thermodynamics, and theoretical calculations were used to demonstrate that phosphorus cannot be completely reused in the preparation of calcium hydrogen phosphate. The findings demonstrated that: a) the residual phosphorus concentration was in the range of 1300 - 1500 mg/L for the preparation of type I feed grade calcium hydrogen phosphate from phosphogypsum leachate;b) the P removal effect could reach 99.99% for the preparation of calcium phosphate from phosphogypsum using the theoretical equation: fixation rate = 87.91 - 10.96(Ca/P) + 3.22(Ca/P)<sup>2</sup> (R<sup>2</sup> = 0.9954);c) The procedure follows the suggested secondary kinetics, and according to the Freundlich isothermal model, the reaction process is under the control of the chemical reaction, with a reaction index of 0.7605. This study can be used as a theoretical guide for the recovery of P from phosphogypsum leachate, the preparation of products to bring about economic by-products, and the purification of wastewater for reuse.
基金Project(2018YFC1903500)supported by the National Key Research and Development Program of ChinaProject(52174386)supported by the National Natural Science Foundation of ChinaProject(2021YFH0058)supported by the Science and Technology Plan Project of Sichuan Province,China。
文摘Electrolytic manganese residue leachate(EMRL)contains plenty of Mn^(2+) and NH_(4)^(+)-N,and phosphogypsum leachate(PGL)contains large amounts of PO_(4)^(3-)-P and F^(-).Traditional methods of EMRL and PGL discharge could seriously damage the ecological environment.In this study,an innovative method for cooperative removal Mn^(2+),NH_(4)^(+)-N,PO_(4)^(3-)-P,F^(-)from PG and POFT was studied.The result showed that Mn^(2+),PO_(4)^(3-)-P and F^(-)were mainly removed in forms of Mg_(3)Si_(4)O_(10)(OH)_(2),Mn_(3)O_(4),Mn_(3)(PO_(4))_(2),Mg_(3)(PO_(4))_(2),CaSO_(4)·2H_(2)O,MnF_(2),MnOOH and Ca_(2)P_(2)O_(7)·2H_(2)O,when LG-MgO was used to adjust the pH value of the system to 9.5,and the volume ratio of EMRL and PGL was 1:4,as well as reaction for 1 h at 25℃.NH_(4)^(+)-N was mainly removed by struvite precipitate,when the molar ratio of N:Mg:P was 1:3:2.4.The concentrations of Mn^(2+),NH_(4)^(+)-N and F^(-)were lower than the integrated wastewater discharge standard.The concentration of PO_(4)^(3-)-P decreased from 254.20 mg/L to 3.21 mg/L.This study provided a new method for EMRL and PGL cooperative harmless treatment.
基金Project supported by the Brazilian National Council for Scientific and Technological Development/CNPq(405982/2022—4,303992/2021-2)。
文摘In this study,vine pruning wastes(VPW)were used as raw material to develop an alternative activated carbon(VPW-AC)for adsorbing and concentrating rare earth elements cerium(Ce(Ⅲ))and lanthanum(La(Ⅲ))from synthetic and real leachate solutions.The Ce and La adsorption studies evaluated the effects of VPW-AC dosage,pH,contact time,rare earth initial concentration,and temperature.The VPW-AC adsorbent was subjected to many physicochemical characterization methods to correlate and understand its adsorptive performance.The characterization data indicate a carbonaceous adsorbent with a specific surface area of 467 m^(2)/g.Zeta potential indicates a material with a negatively charged surface at a pH higher than 3.1,which is extremely beneficial to cations removal.For both rare earths elements(REEs),the adsorption capacity increases with the increase of the pH,reaching its maximum at pH 4-6.The kinetic data are well fitted by Avrami-fractional o rder,while the Liu model agreeably fits equilibrium data.The maximum adsorption capacities for Ce(Ⅲ)and La(Ⅲ)are 48.45 and 53.65 mg/g at 298 K,respectively.The thermodynamic studies suggest that the adsorption process is favorable,spontaneous,and exothermic for both REEs.Pore filling,surface complexation,and ion exchange are the dominant mechanisms.Finally,the VPW-AC was subjected to the recovery of REEs from real phosphogypsum leachate,and it is proved that it can be successfully used to recover REEs in a real process.