Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a...Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a hexagonal crystal structure, which was the same as Y2O2S. The emission spectrum and excitation spectrum were measured, and the effect of Sm^3 + molar ratio on the spectra was discussed. The emission spectra of the phosphors showed three emission peaks due to typical transitions of Sm^3 + (4G5/2→6HJ ,J = 5/2, 7/2, 9/2), and the emission peaks at 606 nm was stronger than others. With the increase of Sm^3 + molar ratio, the emission intensity was strengthened. The excitation peaks were ascribed to the representative energy transition 4f→4f of Ti^4+ phosphor prepared by co-precipitation method was Sm^3+ ions. The results indicated that the Y2O2S : Sm^3+ , Mg^2+ , an efficient long afterglow phosphor.展开更多
This paper describes the excitation spectra nearby 220hm of CaS:Ce^(3+),Na^+ and CaS:Ce^(3+),X^-(X=F,Cl or Br).It is considered that the charge transfer excitation is caused by electron transfer of S^(2-)on 3p^6 to th...This paper describes the excitation spectra nearby 220hm of CaS:Ce^(3+),Na^+ and CaS:Ce^(3+),X^-(X=F,Cl or Br).It is considered that the charge transfer excitation is caused by electron transfer of S^(2-)on 3p^6 to the 4f shell of Ce^(3+).It has been discussed that,when halogen ions act as coactivators,this excitation band shifts to low- er wavenumber.展开更多
La_(2)Mg_(1-x/2)Zr_(1-x/2)O_(6):xBi^(3+)(x=0.01-0.035,abbreviated as LMZ:Bi^(3+))and La_(2-y)Mg_(0.99)Zr_(0.99)O_(6):0.02Bi^(3+),yEu^(3+)(y=0.1-0.11,abbreviated as LMZ:Bi^(3+),Eu^(3+))double-perovskite phosphors were ...La_(2)Mg_(1-x/2)Zr_(1-x/2)O_(6):xBi^(3+)(x=0.01-0.035,abbreviated as LMZ:Bi^(3+))and La_(2-y)Mg_(0.99)Zr_(0.99)O_(6):0.02Bi^(3+),yEu^(3+)(y=0.1-0.11,abbreviated as LMZ:Bi^(3+),Eu^(3+))double-perovskite phosphors were prepared through high-temperature solid-phase method.The emission spectrum of LMZ:xBi^(3+)(x=0.01-0.035)phosphors excited at 353 nm is asymmetric in the range between 375 and 650 nm,showing strong green light.There are two luminescent centers of[Mg1/Zr2-O_(6)]and[Mg2/Zr1-O_(6)]for Bi^(3+)occupation,which were analyzed through different excitation wavelengths,Gaussian fitting peaks,fluorescence decay curves and Rietveld refinement of powder X-ray diffraction data.Through deep study of the luminescent lattices in the LMZ matrix,the green to blue tunning-emission is observed by different excitation wavelengths.In addition,red emission is obtained by co-doping Bi^(3+)/Eu^(3+),and adjustable emission was investigated by changing the content of Eu^(3+)in the co-doped phosphor formulation,so it is converted from green emission to red emission.The above results demonstrate how to tune emission color by co-doping rare earth ions in the double perovskite phosphor,which is attractive for future applications.展开更多
Nanosized long-persistent phosphors SrS:Eu^2+, Dy^3+ were prepared by the hydrothermal method.The samples were characterized by X-ray powder diffraction, transmission electron microscopy, and charge-coupled device ...Nanosized long-persistent phosphors SrS:Eu^2+, Dy^3+ were prepared by the hydrothermal method.The samples were characterized by X-ray powder diffraction, transmission electron microscopy, and charge-coupled device spectrometry.The persistence characteristic was studied using the decay curves.The results showed that the emission intensity decreased sharply with temperature increasing, although the particle size increased.The S2-vacancies caused by oxidization served as shallow traps, and Dy3+ served as deep traps in SrS:Eu^2+, Dy^3+.The afterglow intensity of SrS:Eu^2+, Dy^3+ was higher than that of SrS:Eu2+ prepared at the same temperature.However, the minimization span of initial afterglow with temperature for the former sample was larger than that for the latter.Binary-doped phosphor decayed more slowly than the singly doped one.The afterglow of SrS:Eu^2+, Dy^3+ decayed more quickly with the increase of sintering temperature.展开更多
A novel yellowish green phosphor Tb3+ doped calcium molybdate (CaMoO4) was synthesized at 800 ℃ by conventional solid state reaction method and their crystal structure and luminescent properties were investigated. Th...A novel yellowish green phosphor Tb3+ doped calcium molybdate (CaMoO4) was synthesized at 800 ℃ by conventional solid state reaction method and their crystal structure and luminescent properties were investigated. The X-ray diffraction patterns (XRD) showed that they were simple crystalloid of CaMoO4∶Tb3+. Monitored at 550 nm, the excitation spectrum consisted of two bands and the two excitation peaks located at 305 and 380 nm respectively. The emission spectrum excited by 380 nm UV light was composed of four narrow bands. The strongest emission was located at 540 nm corresponding to 5D4-7F5 transition. The appropriate concentration of Tb3+ was 5%(mole fraction) for the highest emission intensity at 550 nm. These results showed that this Tb3+-activated CaMoO4 was a promising yellowish green phosphor for near-ultraviolet (NUV) InGaN-based white LED.展开更多
The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation...The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation among VUV PL intensity, λem, and Eu3+, Gd3+, and P-content were established. The PLE spectral studies showed that (Y,Gd)(V,P)O4∶Eu3+ exhibited significant absorption in the VUV range. The VUV PL intensity was found to enhance with PO43- and Gd3+-doping. Furthermore, the chromaticity characteristics of (Y,Gd)(V,P)O4∶Eu3+ were also found to be (0.6614, 0.3286) and compared against (Y, Gd)BO3∶Eu3+ as a reference. Based on the characterization results, we are currently improving and evaluating the potential application of (Y,Gd)(V,P)O4∶Eu3+ as a new red-emitting PDP phosphor.展开更多
Er^3+ :Y0.5Gd0.5VO4 crystal with good optical quality was grown by Czochraski method. The structure of the crystal was determined by X-ray powder diffraction method. The segregation coefficient of Er^3 + ions in th...Er^3+ :Y0.5Gd0.5VO4 crystal with good optical quality was grown by Czochraski method. The structure of the crystal was determined by X-ray powder diffraction method. The segregation coefficient of Er^3 + ions in the crystal was measured by the ICP method. The absorption and emission spectra were also measured. On the basis of the spectra, the absorption cross-sections, emission spectrum FWHM and fluorescence lifetime of the crystal were calculated. From the properties mentioned above.展开更多
Gd 2O 3∶Eu 3+ phosphors were prepared by urea homogeneous precipitation with different surfactant and sol-gel method. XRD patterns show that all the obtained samples are in cubic Gd 2O 3, and the results of FTIR...Gd 2O 3∶Eu 3+ phosphors were prepared by urea homogeneous precipitation with different surfactant and sol-gel method. XRD patterns show that all the obtained samples are in cubic Gd 2O 3, and the results of FTIR and fluorescent spectra conformed that OP is a good surfactant for preparing the Gd 2O 3∶Eu 3+ phosphors. The SEM photographs show that the particles prepared by urea homogeneous precipitation method are all spherical and well-dispersed, and grain morphology can be controlled by different surfactant. XRD and SEM indicate that the particle sizes prepared by sol-gel method are in the range of 5~30 nm, and the grain sizes increase with increasing of heated temperatures. Luminescence spectra indicat that the main emission peaks of all samples are at 610 nm, the intensities are different from samples prepared with different surfactant and the luminescence intensities increase with increasing of annealed temperatures.展开更多
The accurate analysis of the elemental composition plays a crucial role in the research of functional materials.The emitting characteristic x-ray fluorescence(XRF)photons can be used for precisely discriminating the s...The accurate analysis of the elemental composition plays a crucial role in the research of functional materials.The emitting characteristic x-ray fluorescence(XRF)photons can be used for precisely discriminating the specified element.The detection accuracy of conventional XRF methodology using semiconductor detector is limited by the energy resolution,thus posing a challenge in accurately scaling the actual energy of each XRF photon.We adopt a novel high-resolution x-ray spectrometer based on the superconducting transition-edge sensor(TES)for the XRF spectroscopy measurement of different elements.Properties including high energy resolution,high detection efficiency and precise linearity of the new spectrometer will bring significant benefits in analyzing elemental composition via XRF.In this paper,we study the Ledge emission line profiles of three adjacent rare earth elements with the evenly mixed sample of their oxide components:terbium,dysprosium and holmium.Two orders of magnitude better energy resolution are obtained compared to a commercial silicon drift detector.With this TES-based spectrometer,the spectral lines overlapped or interfered by background can be clearly distinguished,thus making the chemical component analysis more accurate and quantitative.A database of coefficient values for the line strength of the spectrum can then be constructed thereafter.Equipped with the novel XRF spectrometer and an established coefficient database,a direct analysis of the composition proportion of a certain element in an unknown sample can be achieved with high accuracy.展开更多
Dy^(3+) and Lu^(3+) co-doped CaLaGa_(3)O_(7) phosphors were prepared via high-temperature solid-phase reaction.The electronic structures of LuxCaLa_(0.98-x)Ga_(3)O_(7) were investigated by the first-principles calcula...Dy^(3+) and Lu^(3+) co-doped CaLaGa_(3)O_(7) phosphors were prepared via high-temperature solid-phase reaction.The electronic structures of LuxCaLa_(0.98-x)Ga_(3)O_(7) were investigated by the first-principles calculations.The influence of Lu^(3+) on yellow light emission was studied using X-ray diffraction(XRD)and photoluminescence(PL) measurements.The XRD results indicate that compared to Dy^(3+):CaLaGa_(3)O_(7),the cell parameters of Dy^(3+):LuCaLaGa_(3)O_(7) tend to decrease,which is due to the smaller radius of Lu^(3+).When pumped by blue GaN laser diode(LD),the emission peaks of phosphors with different Lu^(3+)doping concentrations in the visible region are similar,with the strongest peak at 574 nm in the yellow light region,which is sensitive to human eyes.The optimal doping concentration of Lu^(3+) is confirmed to be1 at%,when all emission spectra and measured fluorescence lifetimes are taken into account.Moreover,the optimal phosphor composition Dy^(3+):Lu_(x)CaLa_(0.98-x)Ga_(3)O_(7)(x=0.01) has an internal quantum efficiency(IQE) of 46.94% and an external quantum efficiency(EQE) of 15.19%.Most notably,the prepared phosphor demonstrates excellent thermal stability and a high activation energy(0.203 eV).In addition,the International Illumination Commission color coordinates of the Dy^(3+):LuxCaLa_(0.98-x)Ga_(3)O_(7) phosphors are in the yellow light area.The above analysis indicates that the Dy^(3+):LuxCaLa_(0.98-x)Ga_(3)O_(7)(x=0.001)phosphor has promising application prospects in yellow light-emitting devices.展开更多
Laser phosphor display technology plays an important role in advanced display projection;however,it is a challenge in maintaining excellent color accuracy under high brightness due to the lack of red spectrum.Here,red...Laser phosphor display technology plays an important role in advanced display projection;however,it is a challenge in maintaining excellent color accuracy under high brightness due to the lack of red spectrum.Here,red-emitting Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics as the phosphor wheel have been optimized in chemical compositions and texture orientation.The textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics have high transparency and spot limiting ability,accordingly,the ceramic wheel outputs 1,184 lm of ultra-bright red light under 50 W/mm^(2) laser power density.Moreover,the red spectral utilization(over 600 nm)of textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics is 2.17 times that of traditional Y3Al5O12:Ce^(3+)phosphor wheel.The red-emitting textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)cordierite ceramic herein enables an improved light-color saturation experience,and it is potential in the next-generation laser phosphor display applications.展开更多
Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,...Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,a kind of Eu-terephthalic acid/Tb-sulfosalicylate/ZrO_(2)/ZnZrO_(3)(Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3))phosphor with warm white light emission properties was prepared,and the warm white light LED(wWLEDs) was successfully prepared by encapsulating Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3) phosphors together with 270 nm UV-chip.The ZrO_(2)/ZnZrO_(3),Tb-SSA/ZrO_(2)/ZnZrO_(3) and Eu-PTA/ZrO_(2)/ZnZrO_(3) samples show blue emission,green emission and red emission under deep ultraviolet(UV,270 nm) excitation,respectively.The Tb-SSA and Eu-PTA are co-doped into ZrO_(2)/ZnZrO_(3) matrix with blue emission to achieve the warm white light emission,and the light color can be adjusted by controlling the doping amount of Eu^(3+)-and Tb^(3+).Through the excitation method of single-component phosphor by the single chip,the complex chip packaging process of w-LED can be solved.By doping rare earth organic complexes into porous ZrO_(2)/ZnZrO_(3) matrix,the problems of the light color unbalanced of phosphor and the low luminescence intensity of rare earth doped metal oxides composites can be solved.展开更多
基金Project supported by the Hebei Developing Foundation of Science&Technology (51215103b)
文摘Y2O2S:Sm^3+, Mg^2+, Ti^4+ phosphor was synthesized by co-precipitation method. The crystalline structure of all synthesized phosphors was investigated by XRD. The result showed that all synthesized phosphors had a hexagonal crystal structure, which was the same as Y2O2S. The emission spectrum and excitation spectrum were measured, and the effect of Sm^3 + molar ratio on the spectra was discussed. The emission spectra of the phosphors showed three emission peaks due to typical transitions of Sm^3 + (4G5/2→6HJ ,J = 5/2, 7/2, 9/2), and the emission peaks at 606 nm was stronger than others. With the increase of Sm^3 + molar ratio, the emission intensity was strengthened. The excitation peaks were ascribed to the representative energy transition 4f→4f of Ti^4+ phosphor prepared by co-precipitation method was Sm^3+ ions. The results indicated that the Y2O2S : Sm^3+ , Mg^2+ , an efficient long afterglow phosphor.
基金Supported by the National Natural Science Foundation of China
文摘This paper describes the excitation spectra nearby 220hm of CaS:Ce^(3+),Na^+ and CaS:Ce^(3+),X^-(X=F,Cl or Br).It is considered that the charge transfer excitation is caused by electron transfer of S^(2-)on 3p^6 to the 4f shell of Ce^(3+).It has been discussed that,when halogen ions act as coactivators,this excitation band shifts to low- er wavenumber.
基金Project supported by the National Natural Science Foundation of China(51672063,52161145401)the Key Platform Program of Department of Education of Guangdong Province,China(2021ZDZX1003)。
文摘La_(2)Mg_(1-x/2)Zr_(1-x/2)O_(6):xBi^(3+)(x=0.01-0.035,abbreviated as LMZ:Bi^(3+))and La_(2-y)Mg_(0.99)Zr_(0.99)O_(6):0.02Bi^(3+),yEu^(3+)(y=0.1-0.11,abbreviated as LMZ:Bi^(3+),Eu^(3+))double-perovskite phosphors were prepared through high-temperature solid-phase method.The emission spectrum of LMZ:xBi^(3+)(x=0.01-0.035)phosphors excited at 353 nm is asymmetric in the range between 375 and 650 nm,showing strong green light.There are two luminescent centers of[Mg1/Zr2-O_(6)]and[Mg2/Zr1-O_(6)]for Bi^(3+)occupation,which were analyzed through different excitation wavelengths,Gaussian fitting peaks,fluorescence decay curves and Rietveld refinement of powder X-ray diffraction data.Through deep study of the luminescent lattices in the LMZ matrix,the green to blue tunning-emission is observed by different excitation wavelengths.In addition,red emission is obtained by co-doping Bi^(3+)/Eu^(3+),and adjustable emission was investigated by changing the content of Eu^(3+)in the co-doped phosphor formulation,so it is converted from green emission to red emission.The above results demonstrate how to tune emission color by co-doping rare earth ions in the double perovskite phosphor,which is attractive for future applications.
基金supported by the National Natural Science Foundation of China (10774012 and 10434030)Beijing Jiaotong University Program (2007XM048, 2006XM038)
文摘Nanosized long-persistent phosphors SrS:Eu^2+, Dy^3+ were prepared by the hydrothermal method.The samples were characterized by X-ray powder diffraction, transmission electron microscopy, and charge-coupled device spectrometry.The persistence characteristic was studied using the decay curves.The results showed that the emission intensity decreased sharply with temperature increasing, although the particle size increased.The S2-vacancies caused by oxidization served as shallow traps, and Dy3+ served as deep traps in SrS:Eu^2+, Dy^3+.The afterglow intensity of SrS:Eu^2+, Dy^3+ was higher than that of SrS:Eu2+ prepared at the same temperature.However, the minimization span of initial afterglow with temperature for the former sample was larger than that for the latter.Binary-doped phosphor decayed more slowly than the singly doped one.The afterglow of SrS:Eu^2+, Dy^3+ decayed more quickly with the increase of sintering temperature.
基金the Hebei Developing Foundation of Science &Technology (51215103b)
文摘A novel yellowish green phosphor Tb3+ doped calcium molybdate (CaMoO4) was synthesized at 800 ℃ by conventional solid state reaction method and their crystal structure and luminescent properties were investigated. The X-ray diffraction patterns (XRD) showed that they were simple crystalloid of CaMoO4∶Tb3+. Monitored at 550 nm, the excitation spectrum consisted of two bands and the two excitation peaks located at 305 and 380 nm respectively. The emission spectrum excited by 380 nm UV light was composed of four narrow bands. The strongest emission was located at 540 nm corresponding to 5D4-7F5 transition. The appropriate concentration of Tb3+ was 5%(mole fraction) for the highest emission intensity at 550 nm. These results showed that this Tb3+-activated CaMoO4 was a promising yellowish green phosphor for near-ultraviolet (NUV) InGaN-based white LED.
基金the National Science Council of Taiwan (NSC95 -2113-M-009-024-MY3)
文摘The synthesis, composition optimization, VUV Photoluminescence (PL) spectra, and optical properties, of (Y,Gd)(V,P)O4∶Eu3+ phosphors were investigated by synchrotron radiation. The VUV PLE spectra and the correlation among VUV PL intensity, λem, and Eu3+, Gd3+, and P-content were established. The PLE spectral studies showed that (Y,Gd)(V,P)O4∶Eu3+ exhibited significant absorption in the VUV range. The VUV PL intensity was found to enhance with PO43- and Gd3+-doping. Furthermore, the chromaticity characteristics of (Y,Gd)(V,P)O4∶Eu3+ were also found to be (0.6614, 0.3286) and compared against (Y, Gd)BO3∶Eu3+ as a reference. Based on the characterization results, we are currently improving and evaluating the potential application of (Y,Gd)(V,P)O4∶Eu3+ as a new red-emitting PDP phosphor.
文摘Er^3+ :Y0.5Gd0.5VO4 crystal with good optical quality was grown by Czochraski method. The structure of the crystal was determined by X-ray powder diffraction method. The segregation coefficient of Er^3 + ions in the crystal was measured by the ICP method. The absorption and emission spectra were also measured. On the basis of the spectra, the absorption cross-sections, emission spectrum FWHM and fluorescence lifetime of the crystal were calculated. From the properties mentioned above.
文摘Gd 2O 3∶Eu 3+ phosphors were prepared by urea homogeneous precipitation with different surfactant and sol-gel method. XRD patterns show that all the obtained samples are in cubic Gd 2O 3, and the results of FTIR and fluorescent spectra conformed that OP is a good surfactant for preparing the Gd 2O 3∶Eu 3+ phosphors. The SEM photographs show that the particles prepared by urea homogeneous precipitation method are all spherical and well-dispersed, and grain morphology can be controlled by different surfactant. XRD and SEM indicate that the particle sizes prepared by sol-gel method are in the range of 5~30 nm, and the grain sizes increase with increasing of heated temperatures. Luminescence spectra indicat that the main emission peaks of all samples are at 610 nm, the intensities are different from samples prepared with different surfactant and the luminescence intensities increase with increasing of annealed temperatures.
基金the National Major Scientific Research Instrument Development Project(Grant No.11927805)the National Key Research and Development Program of China(Grant No.2022YFF0608303)+2 种基金the NSFC Young Scientists Fund(Grant No.12005134)the Shanghai-XFEL Beamline Project(SBP)(Grant No.31011505505885920161A2101001)the Shanghai Municipal Science and Technology Major Project(Grant No.2017SHZDZX02)。
文摘The accurate analysis of the elemental composition plays a crucial role in the research of functional materials.The emitting characteristic x-ray fluorescence(XRF)photons can be used for precisely discriminating the specified element.The detection accuracy of conventional XRF methodology using semiconductor detector is limited by the energy resolution,thus posing a challenge in accurately scaling the actual energy of each XRF photon.We adopt a novel high-resolution x-ray spectrometer based on the superconducting transition-edge sensor(TES)for the XRF spectroscopy measurement of different elements.Properties including high energy resolution,high detection efficiency and precise linearity of the new spectrometer will bring significant benefits in analyzing elemental composition via XRF.In this paper,we study the Ledge emission line profiles of three adjacent rare earth elements with the evenly mixed sample of their oxide components:terbium,dysprosium and holmium.Two orders of magnitude better energy resolution are obtained compared to a commercial silicon drift detector.With this TES-based spectrometer,the spectral lines overlapped or interfered by background can be clearly distinguished,thus making the chemical component analysis more accurate and quantitative.A database of coefficient values for the line strength of the spectrum can then be constructed thereafter.Equipped with the novel XRF spectrometer and an established coefficient database,a direct analysis of the composition proportion of a certain element in an unknown sample can be achieved with high accuracy.
基金supported by the Shandong Provincial Natural Science Foundation (ZR2020QE034,ZR2021QF081)National Natural Science Foundation of China (11974304)Anhui Provincial Natural Science Foundation(2008085QA45,2008085QA49)。
文摘Dy^(3+) and Lu^(3+) co-doped CaLaGa_(3)O_(7) phosphors were prepared via high-temperature solid-phase reaction.The electronic structures of LuxCaLa_(0.98-x)Ga_(3)O_(7) were investigated by the first-principles calculations.The influence of Lu^(3+) on yellow light emission was studied using X-ray diffraction(XRD)and photoluminescence(PL) measurements.The XRD results indicate that compared to Dy^(3+):CaLaGa_(3)O_(7),the cell parameters of Dy^(3+):LuCaLaGa_(3)O_(7) tend to decrease,which is due to the smaller radius of Lu^(3+).When pumped by blue GaN laser diode(LD),the emission peaks of phosphors with different Lu^(3+)doping concentrations in the visible region are similar,with the strongest peak at 574 nm in the yellow light region,which is sensitive to human eyes.The optimal doping concentration of Lu^(3+) is confirmed to be1 at%,when all emission spectra and measured fluorescence lifetimes are taken into account.Moreover,the optimal phosphor composition Dy^(3+):Lu_(x)CaLa_(0.98-x)Ga_(3)O_(7)(x=0.01) has an internal quantum efficiency(IQE) of 46.94% and an external quantum efficiency(EQE) of 15.19%.Most notably,the prepared phosphor demonstrates excellent thermal stability and a high activation energy(0.203 eV).In addition,the International Illumination Commission color coordinates of the Dy^(3+):LuxCaLa_(0.98-x)Ga_(3)O_(7) phosphors are in the yellow light area.The above analysis indicates that the Dy^(3+):LuxCaLa_(0.98-x)Ga_(3)O_(7)(x=0.001)phosphor has promising application prospects in yellow light-emitting devices.
基金This research was supported by National Natural Science Foundations of China(51972118)the Fundamental Research Funds for the Central Universities(2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137).
文摘Laser phosphor display technology plays an important role in advanced display projection;however,it is a challenge in maintaining excellent color accuracy under high brightness due to the lack of red spectrum.Here,red-emitting Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics as the phosphor wheel have been optimized in chemical compositions and texture orientation.The textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics have high transparency and spot limiting ability,accordingly,the ceramic wheel outputs 1,184 lm of ultra-bright red light under 50 W/mm^(2) laser power density.Moreover,the red spectral utilization(over 600 nm)of textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics is 2.17 times that of traditional Y3Al5O12:Ce^(3+)phosphor wheel.The red-emitting textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)cordierite ceramic herein enables an improved light-color saturation experience,and it is potential in the next-generation laser phosphor display applications.
基金supported by the National Natural Science Foundation of China (51572034)the Jilin Province Science and Technology Development Plan Project of China (20220203168SF)。
文摘Light emitting diode(LED) is the fourth generation lighting source,but it has some shortcomings such as complex chip packaging process and the unbalanced light color of phosphor in long-time application.In this study,a kind of Eu-terephthalic acid/Tb-sulfosalicylate/ZrO_(2)/ZnZrO_(3)(Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3))phosphor with warm white light emission properties was prepared,and the warm white light LED(wWLEDs) was successfully prepared by encapsulating Eu-PTA/Tb-SSA/ZrO_(2)/ZnZrO_(3) phosphors together with 270 nm UV-chip.The ZrO_(2)/ZnZrO_(3),Tb-SSA/ZrO_(2)/ZnZrO_(3) and Eu-PTA/ZrO_(2)/ZnZrO_(3) samples show blue emission,green emission and red emission under deep ultraviolet(UV,270 nm) excitation,respectively.The Tb-SSA and Eu-PTA are co-doped into ZrO_(2)/ZnZrO_(3) matrix with blue emission to achieve the warm white light emission,and the light color can be adjusted by controlling the doping amount of Eu^(3+)-and Tb^(3+).Through the excitation method of single-component phosphor by the single chip,the complex chip packaging process of w-LED can be solved.By doping rare earth organic complexes into porous ZrO_(2)/ZnZrO_(3) matrix,the problems of the light color unbalanced of phosphor and the low luminescence intensity of rare earth doped metal oxides composites can be solved.