期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(Ⅲ) Complex 被引量:1
1
作者 孙军 席敏 +6 位作者 苏子生 何海晓 田密 李红燕 张宏科 毛涛 张玉祥 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第3期127-130,共4页
A cyclometalated greenish-yellow emitter 2,3-diphenylimidazo[1,2-a]pyridine iridium(Ill) complex is successfully synthesized and used to fabricate phosphorescent organic light-emitting diodes. The optimized device e... A cyclometalated greenish-yellow emitter 2,3-diphenylimidazo[1,2-a]pyridine iridium(Ill) complex is successfully synthesized and used to fabricate phosphorescent organic light-emitting diodes. The optimized device exhibits a greenish-yellow emission with the peak at 523nm and a strong shoulder at 557nm, corresponding to Commission Internationale de l'Eclairage coordinates of (0.38, 0.68). The full width at half maximum of the device is 93 nm, which is broader than the fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] based reference device of 78 nm. Meanwhile, a maximum current efficiency of 62.6 cd/A (47.51m/W) is obtained. This result is higher than a maximum current efficiency of 54.8 cd/A (431m/W) of the Ir(ppy)a based device. The results indicate that this new iridium complex may have potential applications in fabricating high color rendering index white organic light emitting diodes. 展开更多
关键词 of OLEDs Complex Highly Efficient Greenish-Yellow phosphorescent organic light-emitting diodes Based on a Novel 2 3-Diphenylimidazo[1 2-a]Pyridine Iridium in EML than high nm that were CRI LUMO is on
下载PDF
High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures
2
作者 张宏梅 王丹蓓 +1 位作者 曾文进 闫敏楠 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期140-144,共5页
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum... A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs. 展开更多
关键词 HTL NPB High-Efficiency Green phosphorescent organic light-emitting diode Based on Simplified Device Structures OLEDS PEDOT
下载PDF
A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes
3
作者 徐瑶 张雨亭 +2 位作者 寇志起 程爽 卜胜利 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期147-150,共4页
A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: elect... A series of green phosphorescent organic light-emitting diodes based on bipolar-transporting material 4,4Lbis- (carbazol-9-yl) biphenyl (CBP) are prepared. We insert a mixed host emitting interlayer (CBPx: electron- transporting material 1,3,&tris (N-phenylbenzimidazole-2yl) (TPBi)1-X) in the middle of the emitting layer, and the best performance appears when x is 2/3. The position of this interlayer can also affect the performanee of phosphorescent organic light-emitting diodes. When this interlayer is close to the side of the electron transporting layer, the maximum value of luminance, the current efficiency and the power efficiency are 34090cd/m2 at 12 V, 60. 6 cd/A and 56.6 lm/W, respectively. 展开更多
关键词 of is EML OLEDs A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green phosphorescent organic light-emitting diodes in CBP on
下载PDF
Spectral Characteristics of White Organic Light-emitting Diodes Based on Novel Phosphorescent Sensitizer
4
作者 Xiao-qing Tang Jun-sheng Yu +2 位作者 Lu Li Wen Wen Ya-dong Jiang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第6期510-514,共5页
White organic light-emitting diodes were fabricated by using a novel phosphorescence bis(1,2-diphenyl-1H-benzoimidazole)iridium(acetylacetonate)[(pbi)2Ir(acac)] as sensitizer and a fluorescent dye of 4- (dicy... White organic light-emitting diodes were fabricated by using a novel phosphorescence bis(1,2-diphenyl-1H-benzoimidazole)iridium(acetylacetonate)[(pbi)2Ir(acac)] as sensitizer and a fluorescent dye of 4- (dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) codoped into a carbazole polymer of poly(N-vinylcarbazole) (PVK). Through characterizing the UV-Vis absorption spectra, the photoluminescence spectra of (pbi)2Ir(acac) and DCJTB, and the electroluminescence spectral properties of the WOLEDs, the energy transfer mechanisms of the codoped polymer system were deduced. The results demonstrate that the luminescent spectra with different intensity of (pbi)2Ir(acac) and DCJTB were co-existent in the EL spectra of the blended system, which is ascribed to an incomplete energy transfer process in the EL process. The efficient Forster and Dexter energy transfer between the host and the guests enabled a strong yellow emission from (pbi)2Ir(acac) and DCJTB, where (pbi)2Ir(acac) plays an important role as a phosphorescent sensitizer for DCJTB. With the blue emitting-layer of N,N'-diphenyl-N,N'-bis(1- naphthyl)(1,1'-biphenyl)-4,4'-diamine, the codoped system device achieved white emission. The codoped system showed that its Commissions Internationale de 1'Eclairage coordinates were more independent of the variation of bias voltage than those of phosphorescent doped PVK systems. 展开更多
关键词 White organic light-emitting diode phosphorescent sensitizer Spectrum analysis
下载PDF
Platinum complexes as phosphorescent emitters in highly efficient organic light-emitting diodes
5
作者 吕燕芳 张民艳 +3 位作者 尚玉柱 徐红 魏斌 王子兴 《Journal of Shanghai University(English Edition)》 CAS 2011年第4期256-261,共6页
Applications of platinum complexes as phosphorescent emitters in high efficiency organic light-emitting diodes (OLEDs) were shortly discussed in this paper. Key recent studies on highly efficient blue, green, red an... Applications of platinum complexes as phosphorescent emitters in high efficiency organic light-emitting diodes (OLEDs) were shortly discussed in this paper. Key recent studies on highly efficient blue, green, red and white-phosphorescent OLEDs based on Pt complexes are presented in terms of efficiency and color quality. 展开更多
关键词 platinum complexes phosphorescent emitters organic light-emitting diodes (OLEDs) DISPLAY solid-state lighting
下载PDF
Effect of aggregation on thermally activated delayed fluorescence and ultralong organic phosphorescence:QM/MM study
6
作者 张群 王晓菲 +6 位作者 吴智敏 李小芳 张凯 宋玉志 范建忠 王传奎 蔺丽丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期410-419,共10页
Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the exp... Aggregation-induced thermally activated delayed fluorescence(TADF)phenomena have attracted extensive attention recently.In this paper,several theoretical models including monomer,dimer,and complex are used for the explanation of the luminescent properties of(R)-5-(9H-carbazol-9-yl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)isoindoline-1,3-dione((R)-ImNCz),which was recently reported[Chemical Engineering Journal 418129167(2021)].The polarizable continuum model(PCM)and the combined quantum mechanics and molecular mechanics(QM/MM)method are adopted in simulation of the property of the molecule in the gas phase,solvated in acetonitrile and in aggregation states.It is found that large spin–orbit coupling(SOC)constants and a smaller energy gap between the first singlet excited state and the first triplet excited state(△E_(st))in prism-like single crystals(SC_(p)-form)are responsible for the TADF of(R)-lmNCz,while no TADF is found in block-like single crystals(SC_(b)-form)with a larger △E_(st).The multiple ultralong phosphorescence(UOP)peaks in the spectrum are of complex origins,and they are related not only to ImNCz but also to a minor amount of impurities(ImNBd)in the crystal prepared in the laboratory.The dimer has similar phosphorescence emission wavelengths to the(R)-lmNCz-SC_(p) monomers.The complex composed of(R)-lmNCz and(R)-lmNBd contributes to the phosphorescent emission peak at about 600 nm,and the phosphorescent emission peak at about 650 nm is generated by(R)-lmNBd.This indicates that the impurity could also contribute to emission in molecular crystals.The present calculations clarify the relationship between the molecular aggregation and the light-emitting properties of the TADF emitters and will therefore be helpful for the design of potentially more useful TADF emitters. 展开更多
关键词 organic light-emitting diodes thermally activated delayed fluorescence ultralong organic phosphorescence aggregation mode
下载PDF
Red phosphorescent organic light-emitting diodes based on a novel host material with thermally activated delayed fluorescent properties 被引量:2
7
作者 Yilang Li Dongdong Zhang +2 位作者 Yunge Zhang Minghan Cai Lian Duan 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第6期684-691,共8页
High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been pai... High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid to find ways to reduce the phosphors' concentration and efficiency roll-off of PHOLEDs. In this work, we reported red emission PHOLEDs with low dopant concentration and low efficiency roll-off based on a novel host material 2,4-biscyanophenyl-6-(12-phenylindole[2,3-a]carbazole-ll-yl)-1,3,5-triazine (BCPICT), with thermally activated delayed fluorescent (TADF) properties. The device with 1.0% dopant concentration displayed a maximum external quantum efficiency of 10.7%. When the dopant concentration was increased to 2.0%, the device displayed a maximum external quantum efficiency of 10.5% and a low efficiency roll-off of 5.7% at 1000 cd/m^2. 展开更多
关键词 phosphorescent organic light-emitting diodes red emission efficiency roll-off thermally activated delayed fluorescence
原文传递
Achieving high-performance phosphorescent organic light-emitting diodes using thermally activated delayed fluorescence with low concentration
8
作者 HU Jun-tao LU Chao-chao +3 位作者 WANG Peng LI Jie XU Kai WANG Xiang-hua 《Optoelectronics Letters》 EI 2019年第5期347-351,共5页
We fabricated phosphorescent organic light-emitting diodes(Ph OLEDs) using thermally activated delayed fluorescence(TADF) material 10,10’-(4,4’-sulfonylbis(4,1-phenylene)) bis(9,9-dimethyl-9,10-dihydroacridine)(DMAC... We fabricated phosphorescent organic light-emitting diodes(Ph OLEDs) using thermally activated delayed fluorescence(TADF) material 10,10’-(4,4’-sulfonylbis(4,1-phenylene)) bis(9,9-dimethyl-9,10-dihydroacridine)(DMAC-DPS) with low concentration, which showed better performance compared with 1,3-bis(carbazole-9-yl) benzene(m CP) based devices. When the concentration of DMAC-DPS was 1 wt%, the driving voltage of the device was only 3.3 V at 1 000 cd/m2, and the efficiency and lifetime of the device were effectively improved compared with those of m CP based devices. The result indicated that DMAC-DPS could effectively improve the performance of phosphorescent devices. We believe that the better device performance can be attributed to the optimization of the energy transfer process in the emitter layer and lifetime of triplet excitons by DMAC-DPS. The study may provide a simple and effective strategy to achieve high-performance OLEDs. 展开更多
关键词 phosphorescent organic light-emitting diodes(Ph OLEDs) thermally ACTIVATED delayed fluorescence(TADF) DMAC-DPS
原文传递
Triphenyl Phosphine Oxide and Carbazole-based Polymer Host Materials for Green Phosphorescent Organic Light-emitting Diodes
9
作者 Hong-ji Jiang Qing-wei Zhang +2 位作者 Xu He Xiao-lin Zhang Xin-wen Zhang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第5期611-622,共12页
Four novel polymers, poly(3,6-9-decyl-carbazole-alt-1,3-benzene) (PB13CZ), poly(3,6-9-decyl-carbazole-alt- bis(4-phenyl) (phenyl) phosphine oxide) (PTPPO38CZ), poly(3,6-9-decyl-carbazole-alt-2,4-phenyl(d... Four novel polymers, poly(3,6-9-decyl-carbazole-alt-1,3-benzene) (PB13CZ), poly(3,6-9-decyl-carbazole-alt- bis(4-phenyl) (phenyl) phosphine oxide) (PTPPO38CZ), poly(3,6-9-decyl-carbazole-alt-2,4-phenyl(diphenyl) phosphine oxide) (PTPPO13CZ) and poly(3,6-9-decyl-carbazole-alt-bis(3-phenyl) (phenyl) phosphine oxide) (PTTPO27CZ) were synthesized, and their thermal, photophysical properties and device applications were further investigated to correlate the chemical structures with the photoelectric performance of bipolar host materials for phosphorescent organic light emitting diodes. All of them show high thermal stability as revealed by their high glass transition temperatures and thermal decomposition temperatures at 5% weight loss. These polymers have wide band gaps and relatively high triplet energy levels. As a result, the spin coating method was used to prepare the green phosphorescent organic light emitting diodes with polymers PTPPO38CZ, PTPPO13CZ and PTTPO27CZ as the typical host materials. The green device of polymer PTPPO38CZ as host material shows electroluminescent performance with maximum current efficiency of 2.16 cd.A-1, maximum external quantum efficiency of 0.7%, maximum brightness of 1475 cd.m-2 and reduced efficiency roll-off of 7.14% at 600 cd.m-2, which are much better than those of the same devices hosted by polymers PTTPO27CZ and PTPPO13CZ. 展开更多
关键词 Triphenyl phosphine oxide phosphorescent organic light-emitting diode Thermal stability Triplet energy levels Polymer host materials Electroluminescent performance
原文传递
White phosphorescent organic light-emitting diodes using double emissive layer with three dopants for color stability
10
作者 Jin Wook Kim Nam Ho Kim +3 位作者 Ju-AnYoon Seung Il Yoo Jin Sung Kang Woo Young Kim 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第10期100-103,共4页
We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML),... We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML), and Ir(ppy)3:Ir(piq)3 dopants for green:red EML (GR-EML) with N,N'-dicarbazolyl-3, 5-benzene (mCP) as host material. Thicknesses of B-EML and GR-EML are adjusted to form a narrow recombination zone at two EML's interface and charge trapping happens in EML according to wide highest occupied molecular orbital and/or lowest unoccupied molecular orbital energy band gap of mCP and smaller energy band gap of dopants. The total thickness of both EMLs is fixed at 30 nm in the device structure of ITO (150 nm)/MoO3 (2 nm)/N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1″-biphenyl)-4, 4'-diamine (70 nm)/ meP:Firpic-8.0% (12 nm)/mCP:Ir(ppy)3-3.0%:Ir(piq)3-1.5% (18 nm)/2″,2',2"'-(1,3,5-benzinetriyl)-tris(1- phenyl-l-H-benzimidazole) (30 nm)/8-hydroxyquinolinolato-lithium (2 nm)/A1 (120 nm). White PHOLED shows 18.25 cd/A of luminous efficiency and white color coordinates of (0.358 and 0.378) at 5000 cd/m2 and color stability with slight CIExy change of (0.028 and 0.002) as increasing luminance from 1000 to 5000 cd/m^2. 展开更多
关键词 EML White phosphorescent organic light-emitting diodes using double emissive layer with three dopants for color stability ITO nm NPB
原文传递
Progress in small-molecule luminescent materials for organic light-emitting diodes 被引量:9
11
作者 Tiancheng Yu Linlin Liu +1 位作者 Zengqi Xie Yuguang Ma 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第6期907-915,共9页
Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of t... Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials. 展开更多
关键词 organic light-emitting diodes small molecular luminescent materials FLUORESCENCE phosphorescENCE delayed fluores-cence hybridized local and charge-transfer state
原文传递
Molecular hosts for triplet emitters in organic light-emitting diodes and the corresponding working principle 被引量:4
12
作者 MI BaoXiu1,2,GAO ZhiQiang1,LIAO ZhangJin2,HUANG Wei2 & CHEN Chin Hsin3 1Jiangsu Engineering Center for Flat-Panel Displays & Solid-State Lighting School of Materials Science & Engineering,Nanjing University of Posts & Telecommunications,Nanjing 210046,China 2Key Laboratory for Organic Electronics & Information Displays (KLOEID),Institute of Advanced Materials (IAM),Nanjing University of Posts & Telecommunications,Nanjing 210046,China 3Display Institute,Microelectronics and Information Systems Research Center,National Chiao Tung University Hsinchu,Hsinchu,300 China 《Science China Chemistry》 SCIE EI CAS 2010年第8期1679-1694,共16页
This paper summarizes the mechanism and routes for excitation of triplet emitters in dopant emission based phosphorescent organic light-emitting diodes (PhOLEDs),providing a comprehensive overview of recent progress i... This paper summarizes the mechanism and routes for excitation of triplet emitters in dopant emission based phosphorescent organic light-emitting diodes (PhOLEDs),providing a comprehensive overview of recent progress in molecular hosts for triplet emitters in PhOLEDs.Particularly,based on the nature of different hosts,e.g.,hole transporting,electron transporting or bipolar materials,in which the dopant emitters can be hosted to generate phosphorescence,the respective device performances are summarized and compared.Highlights are given to the relationships among the molecular structure,thermal stability,triplet energy,carrier mobility,molecular orbital energy level and their corresponding device performances. 展开更多
关键词 phosphorescent organic light-emitting diodes (OLEDs) working principle ELECTROphosphorescENCE HOSTS TRIPLET emitter
原文传递
Degradation Mechanisms in Blue Organic Light-Emitting Diodes 被引量:5
13
作者 Dan Wang Cong Cheng +1 位作者 Taiju Tsuboi Qisheng Zhang 《CCS Chemistry》 CAS 2020年第4期1278-1296,共19页
An organic light-emitting diode(OLED)is required to exhibit long-time operation without degradation as an inorganic LED.Sufficiently long operation time has been demonstrated for green-and red-emitting OLEDs.However,a... An organic light-emitting diode(OLED)is required to exhibit long-time operation without degradation as an inorganic LED.Sufficiently long operation time has been demonstrated for green-and red-emitting OLEDs.However,a blue device that is important for full-color display and lighting exhibits a much shorter operational lifetime than the other color devices.The short lifetime is mainly attributed to the molecular dissociation and the defects and radical species formation through various unimolecular and bimolecular processes,including direct photolysis,exciton–exciton interaction,and exciton–polaron interaction,and so on. 展开更多
关键词 fluorescent organic light-emitting diodeS phosphorescent organic light-emitting diodeS thermally activated delayed fluorescence device degradation operational lifetime molecular DISSOCIATION
原文传递
New applications of poly(arylene ether)s in organic light-emitting diodes
14
作者 Shi-Yang Shao Jun-Qiao Ding Li-Xiang Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第8期1201-1208,1466,共8页
Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,thei... Compared with conventional π-conjugated polymers,poly(arylene ether)s(PAEs) may take advantages of excellent thermal properties,well-defined effective conjugated length and no catalyst contamination.Recently,their applications have been extended from engineering plastics to optoelectronic materials.In this review,various kinds of functional PAEs used as fluorescent polymers,host polymers and phosphorescent polymers in organic light-emitting diodes(OLEDs) are outlined,and their molecular design,synthesis and device performance are overviewed. 展开更多
关键词 Poly(arylene ether)s organic light-emitting diodes Fluorescent polymers Host polymers phosphorescent polymers
原文传递
Multicolor circularly polarized phosphorescence of axially chiral binuclear platinum(Ⅱ) complexes
15
作者 Jintong Song Rui Zeng +3 位作者 Hui Xiao Hailiang Ni Zong-Xiang Xu Haifeng Xiang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第11期3757-3766,共10页
D-A charge transfer, including through-bond charge transfer and through-space charge transfer between two different electron donors(D) and electron acceptors(A), is a fundamental and powerful tool to tune the optical ... D-A charge transfer, including through-bond charge transfer and through-space charge transfer between two different electron donors(D) and electron acceptors(A), is a fundamental and powerful tool to tune the optical properties of organic dyes. Herein,we demonstrate a unique strategy to tune phosphorescence and circularly polarized luminescence properties of axially chiral binuclear Pt(Ⅱ) complexes through long-range charge transfer, even though these molecules have two totally identical segments on either side of the chiral core. The presence of axial chirality would break not only the symmetry of molecular structure and π-conjugation system but also the symmetry of charge distribution for long-range charge transfer. These binaphthyl-based Pt(Ⅱ)complexes bearing coordinated atoms far away from chiral axis exhibit no Pt-Pt interactions but colorful concentrationdependent phosphorescence with quantum yield up to 86.4% and could be applied as emitters in highly efficient solutionprocessed organic light-emitting diodes to achieve luminance, luminance efficiency, power efficiency, external quantum efficiency, and asymmetry factor up to 8.94 × 10^(3)cd m^(-2), 41.9 cd A-1, 18.8 lm W^(-1), 12.6% and 2.98 × 10^(-3), respectively. Therefore,the present work affords a new and simple way to utilize the inherently asymmetric advantage of chirality for the design of D-Abased organic dyes. 展开更多
关键词 Pt(Ⅱ)complexes organic light-emitting diodes circularly polarized phosphorescence axial chirality
原文传递
具有电子传输特性的Be金属配合物作为磷光主体材料的电致发光性能 被引量:1
16
作者 孙翊夫 叶玲 叶开其 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第8期1714-1717,共4页
采用具有优良电子传输特性的铍金属配合物二[2-(2-酚基)吡啶]合铍(Ⅱ)(Bempp)作为磷光客体材料二(2-苯基吡啶)(N,N'-二异丙基苯甲脒)合铱(Ⅲ)(PPP)的主体材料制备磷光电致发光器件.与经典的空穴传输型主体材料4,4'-二(N-咔唑)联... 采用具有优良电子传输特性的铍金属配合物二[2-(2-酚基)吡啶]合铍(Ⅱ)(Bempp)作为磷光客体材料二(2-苯基吡啶)(N,N'-二异丙基苯甲脒)合铱(Ⅲ)(PPP)的主体材料制备磷光电致发光器件.与经典的空穴传输型主体材料4,4'-二(N-咔唑)联苯(CBP)相比,Bempp更有利于空穴、电子的注入及传输的平衡,与PPP间存在更高效的能量转移.该器件的各项性能指标,包括最大效率和流明效率(63.1 cd/A和54.0lm/W),均明显高于采用CBP作为主体材料的磷光器件. 展开更多
关键词 磷光有机电致发光 铍配合物 电子传输型主体材料
下载PDF
Sensitized ligand narrow-band phosphorescence for high-efficiency solution-processed OLEDs
17
作者 Qian Wang Jin-Yun Wang +2 位作者 Hao Zeng Li-Yi Zhang Zhong-Ning Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2022年第8期1559-1568,共10页
Narrow-band emission is crucial for high color purity in panel display.Nevertheless,attaining narrow-band emission is highly challenging because either thermally activated delayed fluorescence or phosphorescence in or... Narrow-band emission is crucial for high color purity in panel display.Nevertheless,attaining narrow-band emission is highly challenging because either thermally activated delayed fluorescence or phosphorescence in organic and metal-organic compounds originates primarily from multiple charge transfer transitions featured with broad bandwidths.In this work,a general tactic for achieving highly efficient narrow-band emission is proposed by the sensitization of ligand-centered phosphorescence through substantial intermetallic interaction.Relative to weak phosphorescence in mononuclear Pt(Ⅱ)precursors,highly efficient ligand-centered phosphorescence is dramatically activated in Pt(Ⅱ)-Au(Ⅰ)heteronuclear complexes with quantum yield as high as 81%in solutions and 97%in doping films.High-efficiency solution-processed organic light-emitting diodes(OLEDs)with narrow-band emission are successfully attained with external quantum efficiency(EQE)of 21.6%and a full width at half maxima(FWHM)of 36 nm for yellow electroluminescence and EQE of 20.8%and FWHM of 32 nm for green electroluminescence. 展开更多
关键词 ELECTROLUMINESCENCE narrow-band emission organic light-emitting diode phosphorescENCE solution process
原文传递
Luminescent gold(Ⅲ)exciplexes enable efficient multicolor electroluminescence
18
作者 Lisi Zhan Tianhao Chen +9 位作者 Cheng Zhong Xiaosong Cao Yuewei Zhang Yang Zou Zhengyang Bin Jingsong You Dongdong Zhang Lian Duan Chuluo Yang Shaolong Gong 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第11期3213-3222,共10页
The control of excited states and related emissive properties of gold(Ⅲ)complexes mainly depends on the modulation of intramolecular electronic interactions among gold(Ⅲ)metal center,chelating ligands and/or periphe... The control of excited states and related emissive properties of gold(Ⅲ)complexes mainly depends on the modulation of intramolecular electronic interactions among gold(Ⅲ)metal center,chelating ligands and/or peripheral groups.However,luminescent gold(Ⅲ)systems based on intermolecular electronic interactions have never been explored.Here we report a series of proof-of-concept gold(Ⅲ)exciplexes using a simple gold(Ⅲ)complex,AuDPPy,as an electron acceptor.The emissive properties of gold(Ⅲ)exciplexes can be regulated by combining AuDPPy with different donors.Inspiringly,these gold(Ⅲ)exciplexes have donor-dependent emission mechanisms:dominant phosphorescence or dual radiative channels of thermally activated delayed fluorescence(TADF)and phosphorescence.Consequently,these gold(Ⅲ)exciplexes deliver green-to-red electroluminescence with external quantum efficiencies(EQEs)of up to 10.1%.More importantly,using these gold(Ⅲ)exciplexes to host multi-resonance TADF emitters results in narrowband yellow,orange,and deep-red electroluminescence with high EQEs of 23.5%,24.4%,and 27.4%,respectively,competitive to the highest values for gold(Ⅲ)OLEDs in similar color gamut. 展开更多
关键词 gold(Ⅲ)complex EXCIPLEXES thermally activated delayed fluorescence phosphorescENCE organic light-emitting diodes
原文传递
蓝色有机电致磷光主体材料 被引量:5
19
作者 马治军 雷霆 +1 位作者 裴坚 刘晨江 《化学进展》 SCIE CAS CSCD 北大核心 2013年第6期961-974,共14页
有机电致发光(OLEDs)因其具有驱动电压低、主动发光、亮度高、视角宽、响应快、耐冲击与震动等特点,在平板显示与照明领域有着广阔的应用前景。磷光有机电致发光二极管(PhOLEDs)由于能够同时利用三重态和单重态激子,内量子效率从理论上... 有机电致发光(OLEDs)因其具有驱动电压低、主动发光、亮度高、视角宽、响应快、耐冲击与震动等特点,在平板显示与照明领域有着广阔的应用前景。磷光有机电致发光二极管(PhOLEDs)由于能够同时利用三重态和单重态激子,内量子效率从理论上可达到100%,从而克服了传统荧光OLEDs只利用单重态激子时效率25%的限制,在过去的几十年里受到业内人士的极大关注。但要实现三重态磷光,通常需要将重金属原子与主体材料进行掺杂,而重金属配合物的磷光寿命相对较长,容易引起浓度猝灭和三重态-三重态湮灭,所以需要找到合适的主体材料与重金属的磷光发射体进行掺杂来减少上述因素的影响从而得到高性能的电致磷光器件。本文综述了近年来国内外蓝色有机电致磷光主体材料的研究状况,并对空穴传输型、电子传输型和双极传输型的蓝色磷光主体材料按照官能团的不同进行了分类总结和评述,并对其光物理性质、热学性质、电化学性质及器件性能等作了详细归纳比较,最后展望了蓝色有机电致磷光主体材料的前景和发展趋势。 展开更多
关键词 有机电致发光材料 蓝色磷光主体材料 磷光有机电致发光二极管
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部