The guano of penguins, other seabirds, and pinnipeds is an important source of phosphorus in the ecosystems of Antarctica. To study the vertical distribution of phosphorus in sediments influenced by penguins, we measu...The guano of penguins, other seabirds, and pinnipeds is an important source of phosphorus in the ecosystems of Antarctica. To study the vertical distribution of phosphorus in sediments influenced by penguins, we measured phosphorus forms in two sediment cores ((31 and Q2) from ephemeral ponds on Ardley Island. We also investigated the correlations between these phosphorus forms and physicochemical characteristics. Inorganic phosphorus was the main form of phosphorus in both cores. The vertical distribution patterns of phosphorus forms in G1 and Q2 differed, indicating different sedimentary sources. The GI sediment profile was more influenced by penguin guano than the Q2 profile, and as a result sediments in the G1 core had higher total phosphorus, non-apatite inorganic phosphorus, and apatite phosphorus content. The findings from two ephemeral ponds on Ardley Island indicate that the contribution of penguin guano to organic matter in G1 core has increased in recent times, while Q2 showed a relatively larger contribution from mosses in ancient times, evident from the lithology and the vertical trend in organic matter.展开更多
A laboratory experiment was carried out through a six-month incubation of undredged (control) and dredged cores to study the effect of sediment dredging on phosphorus (P) release from the sediment in the Taihu Lak...A laboratory experiment was carried out through a six-month incubation of undredged (control) and dredged cores to study the effect of sediment dredging on phosphorus (P) release from the sediment in the Taihu Lake. During the experiment, dredging the upper 30 cm layer could efficiently reduce the interstitial PO4^3-P concentration and different P forms in the sediment. The P fluxes of the undredged and dredged cores ranged from -5.1 to 3047.6 and -60.7 to 14.4μg·m^-2·d^-1, respectively. The fluxes of the dredged cores were generally lower than those of the control. Differences in the fluxes between the dredged and undredged cores were statistically significant (P 〈 0.05) from March to June 2006. The sediment P in the dredged cores had a lower release potential than that in the control. Dredging can be considered as a useful measure for rehabilitating the aquatic ecosystem after the external P loading in the Talhu Lake catchment was efficiently reduced.展开更多
The forms of phosphorus and silicon in the natural grain sizes surface sediments of the southern Bohai Sea were studied. In sediments, the organic matter bound form of phosphorus was the main form of transferable phos...The forms of phosphorus and silicon in the natural grain sizes surface sediments of the southern Bohai Sea were studied. In sediments, the organic matter bound form of phosphorus was the main form of transferable phosphorus and ranged from 0.37 μmol/g to 1.57 μmol/g, accounting for 10.7% of the total phosphorus, others were the carbonate bound form, iron manganese oxide bound form and ion exchange able form; the transferable form of phosphorus accounted for 19.2% of the total phosphorus. Silicon’s carbonate bound form was predominant over others among its transferable forms, and content ranged from 1.55 μmol/g to 8.94 μmol/g, accounting for 0.05% of the total silicon; the total amount of transferable silicon forms accounted for only 0.12% of the total silicon. Therefore, 19.2% of the total phosphorus and 0.12% of the total silicon contained in the surface sediments of the southern Bohai Sea could participate in the biogeochemical cycling.展开更多
The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low va...The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.展开更多
According to two cruises investigation information in summer and winter during 1998 and 1999, the phosphorous concentration distribution and changes of summer and winter were discussed primarily in the South China Sea...According to two cruises investigation information in summer and winter during 1998 and 1999, the phosphorous concentration distribution and changes of summer and winter were discussed primarily in the South China Sea. The results show that the phosphate concentration of surface seawater in summer is distinctly lower than that in winter, averaging 0.04 mumol/dm(3) in summer and 0.35 mumol/ dm(3) in winter. The organic phosphorous concentration of surface seawater in summer is higher than that in winter, averaging 0.12 mumol/dm(3) in summer and 0. 04 mumol/dm(3) in winter respectively. The seasonal changes of total phosphorus are similar to phosphate, averaging 0.22 mumol/dm(3) in summer and 0.61 mumol/dm(3) in winter respectively. In vertical direction, phosphate, TDP and TP content are the lowest in upper 50 m water column, and increase in linearity rapidly with water depth, increasing slowly under 500 m, reach to maximum about 1000 m, then decrease slightly with water depth increasing. The vertical distribution is typical in summer, and there is small dispersed for phosphorus concentration for the same depth of different stations. However, in winter there is a large disperse for phosphate, TDP and TP, specifically for phosphate at 200 m at which the concentration is maximum. This result indicates that there are large differences in hydrology and biology conditions that affect largely the chemical environment of the South China Sea. The organic phosphorus is the predominant in surface seawater of the South China Sea, but the inorganic phosphorus is the predominant in layers below depth of 150 m. The organic phosphorus concentration in deep water usually decreases with water depth increasing. The organic phosphorus in summer is remarkably more than that in winter because of the strong biology activities in summer.展开更多
Phosphorus is a key element and plays an important role in global biogeochemical cycles. The evolution of sedimentary environment is also influenced by phosphorus concentrations and fractions as well as phosphate sorp...Phosphorus is a key element and plays an important role in global biogeochemical cycles. The evolution of sedimentary environment is also influenced by phosphorus concentrations and fractions as well as phosphate sorption characteristics of the marine sediments. The geochemical characteristics of phosphorus and their environmental records were presented in Jiaozhou Bay sediments. Profiles of different forms of phosphorus were measured as well as the roles and vertical distributions of phosphorus forms in response to sedimentary environment changes were investigated. The results showed that inorganic phosphorus (IP) was the major fraction of total phosphorus (TP); phosphorus which is bound to calcium, iron and occluded phosphorus, as well as the exchangeable phosphorus were the main forms of IP, especially calcium - phosphorus, including detrital carbonate-bound phosphorus (Det- P) and authigenic apatite-bound phosphorus (ACa- P), are the uppermost constituent of IP in Jiaozhou Bay sediments. Moreover, the lead-210 chronology technology was employed to estimate how much phosphorus was buried ultimately in sediments. And the research showed that the impacts of human activities have increased remarkably in recent years especially between the 1980s and 2000. According to research, the development of Jiaozhou Bay environment in the past hundred years can be divided into three stages : ( 1 ) before the 1980s characterized by the relatively low sedimentation rate, weak land-derived phosphorus inputs and low anthropogenic impacts; (2) from the 1980s to around 2000, accelerating in the 1990s, during which high sedimentation rates, high phosphorus abundance and burial fluxes due to the severe human activities impacted on the whole environmental system ; ( 3 ) after 2000, the period of the improvement of environment, the whole system has been improved including the decreasing sedimentation rates, concentration and the burial fluxes of phosphorus.展开更多
Phosphorus(P) bioavailability is an important factor in alpine meadows and plays an important role in the response to climate change and the maintenance of ecosystem functioning.However,little is known about how envir...Phosphorus(P) bioavailability is an important factor in alpine meadows and plays an important role in the response to climate change and the maintenance of ecosystem functioning.However,little is known about how environmental factors,such as elevation and slope aspect,affect soil P bioavailability.We explored the effects of elevational gradient and slope aspect on different forms of P and P availability in the alpine meadows on the southern slope of the Tian Shan Mountain range.Total P was found to be 851.9-1556.7 mg·kg^(-1) at different elevational gradients and 437.5-1547.0 mg·kg^(-1) at different slope aspects,and highest at 3337 and 3652 m.a.s.l.,but little differences between slope aspects.Olsen P and Labile P linearly increased with the elevational gradient.The valley and the base of the shady slope had higher contents of H_2O-Po.NaHCO_3-Pi,and NaHCO_3-Po,and high-active organic P(NaHCO_3-Po,NaOH-Po,and H_2O-Po) was positively correlated with soil total carbon(TC),total nitrogen(TN),soil organic carbon(SOC),and aboveground biomass(AGB),but was negatively correlated with pH,aluminum(Al),and calcium(Ca) at different elevational gradients.High-active bioavailable P(H_2OPi,H_2O-Po,NaHCO_3-Pi,and NaHCO_3-Po) was positively correlated with soil SOC and AGB and was negatively correlated with pH at different slope aspects.Our results suggest that soil P availability in alpine meadows is significantly controlled by topographical factors and the valleys and base of shady slopes are reservoirs of high-active bioavailable P.展开更多
Phosphorus(P)in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment.The mobility and bioavailability of P primarily depend on the contents of different P forms,w...Phosphorus(P)in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment.The mobility and bioavailability of P primarily depend on the contents of different P forms,which in turn depend on the sedimentary environment.Here,sediment samples from Baiyangdian(BYD)lake were collected and measured by the Standards,Measurements,and Testing procedure and Phosphorus-31 nuclear magnetic resonance spectroscopy(31P NMR)to characterize different P forms and their relationships with sediment physicochemical properties.The P content in the sediments varied in different areas and had characteristics indicative of exogenous river input.Inorganic P(334–916 mg/kg)was the dominant form of P.The 31P NMR results demonstrated that orthophosphate monoesters(16–110 mg/kg),which may be a source of P when redox conditions change,was the dominant form of organic P(20–305 mg/kg).The distribution of P forms in each region varied greatly because of the effects of anthropogenic activities,and the regions affected by exogenous river input had a higher content of P and a higher risk of P release.Principal component analysis indicated that P bound to Fe,Al,and Mn oxides and hydroxides(NaOH-P)and organic P were mainly derived from industrial and agricultural pollution,respectively.Redundancy analysis indicated that increases in pH lead to the release of NaOH-P.Organic matter plays an important role in the organic P biogeochemical cycle,as it acts as a sink and source of organic P.展开更多
The primary productivity of terrestrial ecosystems is influenced by soil phosphorus bioavailability, which depends largely on chemical fractions of phosphorus. The sequential fractionation technique developed by Hedle...The primary productivity of terrestrial ecosystems is influenced by soil phosphorus bioavailability, which depends largely on chemical fractions of phosphorus. The sequential fractionation technique developed by Hedley et al. or its subsequent modification is a well-known method to determine soil phosphorus forms. Hedley sequential fractionation technique separates the phosphorus into fractions based on their different chemical solubilities in extractants with certain chemical properties. Recently, synchrotron-based X-ray absorption near edge structure(XANES) spectroscopy has been employed to measure soil phosphorus species directly and non-invasively. The XANES method provides information concerning local structure and chemical information of target elements at a molecular level. Thus, it can distinguish phosphorus fractions bound by metal oxides or hydroxides(such as Fe, Al, and Ca). In this present work, the phosphorus speciation of topsoil along a glacial foreland chronosequence in Gongga Mountain is determined using these two methods. The changes in soil phosphorus bioavailability along the 120-year-old chronosequence are assessed based on comparisons of the results obtained by these two methods. The results indicate that Hedley sequential fractionation technique shows a greater ability to determine soil bioavailable phosphorus(Resin-P and NaCHO3-P), while XANES is effective in distinguishing phosphorus bound by metal compounds. In the chronosequence, Ca- and Al-bound phosphorus were derived mainly from primary minerals, whose phosphorus contents decreased within 120 years of moraine weathering and soil development. The content of soil bioavailable phosphorus increased rapidly after 30 years since deglaciation. The increasing phosphorus bioavailability promoted the colonizing and primary succession vegetation.展开更多
基金funded by the Chinese Polar Environment Comprehensive Investigation & Assessment Programs (Grant no. CHINARE2015-02-01)
文摘The guano of penguins, other seabirds, and pinnipeds is an important source of phosphorus in the ecosystems of Antarctica. To study the vertical distribution of phosphorus in sediments influenced by penguins, we measured phosphorus forms in two sediment cores ((31 and Q2) from ephemeral ponds on Ardley Island. We also investigated the correlations between these phosphorus forms and physicochemical characteristics. Inorganic phosphorus was the main form of phosphorus in both cores. The vertical distribution patterns of phosphorus forms in G1 and Q2 differed, indicating different sedimentary sources. The GI sediment profile was more influenced by penguin guano than the Q2 profile, and as a result sediments in the G1 core had higher total phosphorus, non-apatite inorganic phosphorus, and apatite phosphorus content. The findings from two ephemeral ponds on Ardley Island indicate that the contribution of penguin guano to organic matter in G1 core has increased in recent times, while Q2 showed a relatively larger contribution from mosses in ancient times, evident from the lithology and the vertical trend in organic matter.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX3-SW-348)the National Natural Science Foundation of China (Nos.20577053 and 40730528)the National High Technology Research and Development Program (863 Program) of China (No.2005AA60101005).
文摘A laboratory experiment was carried out through a six-month incubation of undredged (control) and dredged cores to study the effect of sediment dredging on phosphorus (P) release from the sediment in the Taihu Lake. During the experiment, dredging the upper 30 cm layer could efficiently reduce the interstitial PO4^3-P concentration and different P forms in the sediment. The P fluxes of the undredged and dredged cores ranged from -5.1 to 3047.6 and -60.7 to 14.4μg·m^-2·d^-1, respectively. The fluxes of the dredged cores were generally lower than those of the control. Differences in the fluxes between the dredged and undredged cores were statistically significant (P 〈 0.05) from March to June 2006. The sediment P in the dredged cores had a lower release potential than that in the control. Dredging can be considered as a useful measure for rehabilitating the aquatic ecosystem after the external P loading in the Talhu Lake catchment was efficiently reduced.
文摘The forms of phosphorus and silicon in the natural grain sizes surface sediments of the southern Bohai Sea were studied. In sediments, the organic matter bound form of phosphorus was the main form of transferable phosphorus and ranged from 0.37 μmol/g to 1.57 μmol/g, accounting for 10.7% of the total phosphorus, others were the carbonate bound form, iron manganese oxide bound form and ion exchange able form; the transferable form of phosphorus accounted for 19.2% of the total phosphorus. Silicon’s carbonate bound form was predominant over others among its transferable forms, and content ranged from 1.55 μmol/g to 8.94 μmol/g, accounting for 0.05% of the total silicon; the total amount of transferable silicon forms accounted for only 0.12% of the total silicon. Therefore, 19.2% of the total phosphorus and 0.12% of the total silicon contained in the surface sediments of the southern Bohai Sea could participate in the biogeochemical cycling.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201004)Jilin Provincial Research Foundation for Basic Research, China (201105033)
文摘The study was conducted to reveal P fractions and N forms changing characters during composting of pig manure with rice straw.During composting,the NH 4 +-N concentration decreased and reached at a relatively low value(〈400 mg kg-1) in the final compost,while the NO 3--N concentration increased.Total N losses mainly occurred during thermophilic phase due to the high temperature,the high NH 4 +-N concentration and the increase of pH value.Labile inorganic P was dominated in the pig manure and initial compost mixture.During composting,the proportion of labile inorganic P of total extracted P decreased,while the proportion of Fe+Al-bound P,Ca+Mg-bound P and residual P increased.The evolutions of the proportion of labile inorganic P,Fe+Al-bound P and Ca+Mg-bound P were well correlated with the changes of pH value,organic matter and C/N ratio.Therefore,composting could increase the concentration of N and P and decrease the presence of NH 4 +-N and labile P fractions which might cause environmental issues following land application.
基金National Basic Research Priorities Programme of China under contract No.G2000078500.
文摘According to two cruises investigation information in summer and winter during 1998 and 1999, the phosphorous concentration distribution and changes of summer and winter were discussed primarily in the South China Sea. The results show that the phosphate concentration of surface seawater in summer is distinctly lower than that in winter, averaging 0.04 mumol/dm(3) in summer and 0.35 mumol/ dm(3) in winter. The organic phosphorous concentration of surface seawater in summer is higher than that in winter, averaging 0.12 mumol/dm(3) in summer and 0. 04 mumol/dm(3) in winter respectively. The seasonal changes of total phosphorus are similar to phosphate, averaging 0.22 mumol/dm(3) in summer and 0.61 mumol/dm(3) in winter respectively. In vertical direction, phosphate, TDP and TP content are the lowest in upper 50 m water column, and increase in linearity rapidly with water depth, increasing slowly under 500 m, reach to maximum about 1000 m, then decrease slightly with water depth increasing. The vertical distribution is typical in summer, and there is small dispersed for phosphorus concentration for the same depth of different stations. However, in winter there is a large disperse for phosphate, TDP and TP, specifically for phosphate at 200 m at which the concentration is maximum. This result indicates that there are large differences in hydrology and biology conditions that affect largely the chemical environment of the South China Sea. The organic phosphorus is the predominant in surface seawater of the South China Sea, but the inorganic phosphorus is the predominant in layers below depth of 150 m. The organic phosphorus concentration in deep water usually decreases with water depth increasing. The organic phosphorus in summer is remarkably more than that in winter because of the strong biology activities in summer.
文摘Phosphorus is a key element and plays an important role in global biogeochemical cycles. The evolution of sedimentary environment is also influenced by phosphorus concentrations and fractions as well as phosphate sorption characteristics of the marine sediments. The geochemical characteristics of phosphorus and their environmental records were presented in Jiaozhou Bay sediments. Profiles of different forms of phosphorus were measured as well as the roles and vertical distributions of phosphorus forms in response to sedimentary environment changes were investigated. The results showed that inorganic phosphorus (IP) was the major fraction of total phosphorus (TP); phosphorus which is bound to calcium, iron and occluded phosphorus, as well as the exchangeable phosphorus were the main forms of IP, especially calcium - phosphorus, including detrital carbonate-bound phosphorus (Det- P) and authigenic apatite-bound phosphorus (ACa- P), are the uppermost constituent of IP in Jiaozhou Bay sediments. Moreover, the lead-210 chronology technology was employed to estimate how much phosphorus was buried ultimately in sediments. And the research showed that the impacts of human activities have increased remarkably in recent years especially between the 1980s and 2000. According to research, the development of Jiaozhou Bay environment in the past hundred years can be divided into three stages : ( 1 ) before the 1980s characterized by the relatively low sedimentation rate, weak land-derived phosphorus inputs and low anthropogenic impacts; (2) from the 1980s to around 2000, accelerating in the 1990s, during which high sedimentation rates, high phosphorus abundance and burial fluxes due to the severe human activities impacted on the whole environmental system ; ( 3 ) after 2000, the period of the improvement of environment, the whole system has been improved including the decreasing sedimentation rates, concentration and the burial fluxes of phosphorus.
基金grants from the National Natural Science Foundation of China(U1703244)
文摘Phosphorus(P) bioavailability is an important factor in alpine meadows and plays an important role in the response to climate change and the maintenance of ecosystem functioning.However,little is known about how environmental factors,such as elevation and slope aspect,affect soil P bioavailability.We explored the effects of elevational gradient and slope aspect on different forms of P and P availability in the alpine meadows on the southern slope of the Tian Shan Mountain range.Total P was found to be 851.9-1556.7 mg·kg^(-1) at different elevational gradients and 437.5-1547.0 mg·kg^(-1) at different slope aspects,and highest at 3337 and 3652 m.a.s.l.,but little differences between slope aspects.Olsen P and Labile P linearly increased with the elevational gradient.The valley and the base of the shady slope had higher contents of H_2O-Po.NaHCO_3-Pi,and NaHCO_3-Po,and high-active organic P(NaHCO_3-Po,NaOH-Po,and H_2O-Po) was positively correlated with soil total carbon(TC),total nitrogen(TN),soil organic carbon(SOC),and aboveground biomass(AGB),but was negatively correlated with pH,aluminum(Al),and calcium(Ca) at different elevational gradients.High-active bioavailable P(H_2OPi,H_2O-Po,NaHCO_3-Pi,and NaHCO_3-Po) was positively correlated with soil SOC and AGB and was negatively correlated with pH at different slope aspects.Our results suggest that soil P availability in alpine meadows is significantly controlled by topographical factors and the valleys and base of shady slopes are reservoirs of high-active bioavailable P.
基金supported by the Beijing Municipal Science and Technology Plan Project (No. Z181100005518005)the National Natural Science Foundation of China (Nos. 51579009, 51879012)the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2018ZX07110004)
文摘Phosphorus(P)in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment.The mobility and bioavailability of P primarily depend on the contents of different P forms,which in turn depend on the sedimentary environment.Here,sediment samples from Baiyangdian(BYD)lake were collected and measured by the Standards,Measurements,and Testing procedure and Phosphorus-31 nuclear magnetic resonance spectroscopy(31P NMR)to characterize different P forms and their relationships with sediment physicochemical properties.The P content in the sediments varied in different areas and had characteristics indicative of exogenous river input.Inorganic P(334–916 mg/kg)was the dominant form of P.The 31P NMR results demonstrated that orthophosphate monoesters(16–110 mg/kg),which may be a source of P when redox conditions change,was the dominant form of organic P(20–305 mg/kg).The distribution of P forms in each region varied greatly because of the effects of anthropogenic activities,and the regions affected by exogenous river input had a higher content of P and a higher risk of P release.Principal component analysis indicated that P bound to Fe,Al,and Mn oxides and hydroxides(NaOH-P)and organic P were mainly derived from industrial and agricultural pollution,respectively.Redundancy analysis indicated that increases in pH lead to the release of NaOH-P.Organic matter plays an important role in the organic P biogeochemical cycle,as it acts as a sink and source of organic P.
基金supported by the National Natural Science Foundation of China(Grant No.41272220)the Chinese Academy of Sciences(Grant Nos.KZCX2-YW-BR-21 and KZZD-EW-TZ-06)
文摘The primary productivity of terrestrial ecosystems is influenced by soil phosphorus bioavailability, which depends largely on chemical fractions of phosphorus. The sequential fractionation technique developed by Hedley et al. or its subsequent modification is a well-known method to determine soil phosphorus forms. Hedley sequential fractionation technique separates the phosphorus into fractions based on their different chemical solubilities in extractants with certain chemical properties. Recently, synchrotron-based X-ray absorption near edge structure(XANES) spectroscopy has been employed to measure soil phosphorus species directly and non-invasively. The XANES method provides information concerning local structure and chemical information of target elements at a molecular level. Thus, it can distinguish phosphorus fractions bound by metal oxides or hydroxides(such as Fe, Al, and Ca). In this present work, the phosphorus speciation of topsoil along a glacial foreland chronosequence in Gongga Mountain is determined using these two methods. The changes in soil phosphorus bioavailability along the 120-year-old chronosequence are assessed based on comparisons of the results obtained by these two methods. The results indicate that Hedley sequential fractionation technique shows a greater ability to determine soil bioavailable phosphorus(Resin-P and NaCHO3-P), while XANES is effective in distinguishing phosphorus bound by metal compounds. In the chronosequence, Ca- and Al-bound phosphorus were derived mainly from primary minerals, whose phosphorus contents decreased within 120 years of moraine weathering and soil development. The content of soil bioavailable phosphorus increased rapidly after 30 years since deglaciation. The increasing phosphorus bioavailability promoted the colonizing and primary succession vegetation.