[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus...[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus by different constructed wetland substrates like steel slag, cin- der slag, shale, boiler slag, soil and gravel. [ Result~ The maximum adsorption of phosphorus by various substrates showed as follows, steel slag 〉 cinder slag 〉 shale 〉 boiler slag 〉 soil 〉 gravel. When the initial concentration of phosphorus was 5 mg/L, the removal rate of phosphorus by the steel slag, cinder slag, shale, boiler slag, soil and gravel was 99.76%, 85.8%, 71.2%, 63.0%, 46.8% and 11.7% respectively. It is suggested that shale and boiler slag can be used as the substrate of subsurface-flow constructed wetlands; cinder slag can be chosen as a renewable sub- strate for intensifying phosphorus removal; steel slag could be used at the end of subsurface-flow constructed wetlands for treating TP in outflows. [Concluslon] The research could provide theoretical references for choosing a suitable substrate for constructed wetlands to remove phosphorus in future.展开更多
Full-scale experiments have been carried out to adapt the activated sludge model ASM2d to include the influence of metal dosage (Fe^3+ and Al^3+) for phosphorus removal. Phosphorus removal rates, nitrification rat...Full-scale experiments have been carried out to adapt the activated sludge model ASM2d to include the influence of metal dosage (Fe^3+ and Al^3+) for phosphorus removal. Phosphorus removal rates, nitrification rates, as well as pH and sludge settling performance, were evaluated as functions of the metal dosages. Furthermore, models relating certain parameters to the dosage of chemicals have been derived. Corresponding parameters in the ASM2d and the secondary settler models, included in the Benchmark Simulation Model No 1 (BSM1), have been modified to take the metal influence into consideration. Based on the effluent limits and penalty policy of China, an equivalent evaluation method was derived for the total cost assessment. A large number of 300-day steady-state and 14-day open-loop dynamic simulations were performed to demonstrate the difference in behavior between the original and the modified BSM1. The results show that 1) both in low and high mole concentrations, Fe^3+ addition results in a higher phosphorus removal rate than Al^3+; 2) the sludge settling velocity will increase due to the metal addition; 3) the respiration rate of the activated sludge is decreased more by the dosage of Al^3+ than Fe^3+; 4) the inhibition of Al^3+ on the nitrification rate is stronger than that of Fe^3+; 5) the total operating cost will reach the minimum point for smaller dosages of Fe^3+, but always increase with Al^3+ addition.展开更多
基金Supported by National Natural Science Foundation of China(50278016)
文摘[ Objective] The study aimed to discuss the removal rate of phosphorus by different constructed wetland substrates. [ Methed] Based on static experiments, we analyzed the removal rate and characteristics of phosphorus by different constructed wetland substrates like steel slag, cin- der slag, shale, boiler slag, soil and gravel. [ Result~ The maximum adsorption of phosphorus by various substrates showed as follows, steel slag 〉 cinder slag 〉 shale 〉 boiler slag 〉 soil 〉 gravel. When the initial concentration of phosphorus was 5 mg/L, the removal rate of phosphorus by the steel slag, cinder slag, shale, boiler slag, soil and gravel was 99.76%, 85.8%, 71.2%, 63.0%, 46.8% and 11.7% respectively. It is suggested that shale and boiler slag can be used as the substrate of subsurface-flow constructed wetlands; cinder slag can be chosen as a renewable sub- strate for intensifying phosphorus removal; steel slag could be used at the end of subsurface-flow constructed wetlands for treating TP in outflows. [Concluslon] The research could provide theoretical references for choosing a suitable substrate for constructed wetlands to remove phosphorus in future.
文摘Full-scale experiments have been carried out to adapt the activated sludge model ASM2d to include the influence of metal dosage (Fe^3+ and Al^3+) for phosphorus removal. Phosphorus removal rates, nitrification rates, as well as pH and sludge settling performance, were evaluated as functions of the metal dosages. Furthermore, models relating certain parameters to the dosage of chemicals have been derived. Corresponding parameters in the ASM2d and the secondary settler models, included in the Benchmark Simulation Model No 1 (BSM1), have been modified to take the metal influence into consideration. Based on the effluent limits and penalty policy of China, an equivalent evaluation method was derived for the total cost assessment. A large number of 300-day steady-state and 14-day open-loop dynamic simulations were performed to demonstrate the difference in behavior between the original and the modified BSM1. The results show that 1) both in low and high mole concentrations, Fe^3+ addition results in a higher phosphorus removal rate than Al^3+; 2) the sludge settling velocity will increase due to the metal addition; 3) the respiration rate of the activated sludge is decreased more by the dosage of Al^3+ than Fe^3+; 4) the inhibition of Al^3+ on the nitrification rate is stronger than that of Fe^3+; 5) the total operating cost will reach the minimum point for smaller dosages of Fe^3+, but always increase with Al^3+ addition.