Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell ac...Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.展开更多
We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's d...We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.展开更多
AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK)...AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a significant statistical significance (P〈 0.01). CONCLUSION: IL-1β has a direct action on hepatic fibrosis by up-regulating TIMMP-1 mRNA expression in ratessionin in rate HSC.JNK and p38 mitogen-activated protein kinases (MAPKs) are involved in IL-1β-induced TIMMP-1 gene expression, and play a distinct role in this process, indicating that p38 and .INK pathways cooperatively mediate TIMP-1 mRNA expression in rat HSC.展开更多
BACKGROUND Intestinal ischemia reperfusion(I/R)occurs in various diseases,such as trauma and intestinal transplantation.Excessive reactive oxygen species(ROS)accumulation and subsequent apoptotic cell death in intesti...BACKGROUND Intestinal ischemia reperfusion(I/R)occurs in various diseases,such as trauma and intestinal transplantation.Excessive reactive oxygen species(ROS)accumulation and subsequent apoptotic cell death in intestinal epithelia are important causes of I/R injury.PTEN-induced putative kinase 1(PINK1)and phosphorylation of dynamin-related protein 1(DRP1)are critical regulators of ROS and apoptosis.However,the correlation of PINK1 and DRP1 and their function in intestinal I/R injury have not been investigated.Thus,examining the PINK1/DRP1 pathway may help to identify a protective strategy and improve the patient prognosis.AIM To clarify the mechanism of the PINK1/DRP1 pathway in intestinal I/R injury.METHODS Male C57BL/6 mice were used to generate an intestinal I/R model via superior mesenteric artery occlusion followed by reperfusion.Chiu’s score was used to evaluate intestinal mucosa damage.The mitochondrial fission inhibitor mdivi-1 was administered by intraperitoneal injection.Caco-2 cells were incubated in vitro in hypoxia/reoxygenation conditions.Small interfering RNAs and overexpression plasmids were transfected to regulate PINK1 expression.The protein expression levels of PINK1,DRP1,p-DRP1 and cleaved caspase 3 were measured by Western blotting.Cell viability was evaluated using a Cell Counting Kit-8 assay and cell apoptosis was analyzed by TUNEL staining.Mitochondrial fission and ROS were tested by MitoTracker and MitoSOX respectively.RESULTS Intestinal I/R and Caco-2 cell hypoxia/reoxygenation decreased the expression of PINK1 and p-DRP1 Ser637.Pretreatment with mdivi-1 inhibited mitochondrial fission,ROS generation,and apoptosis and ameliorated cell injury in intestinal I/R.Upon PINK1 knockdown or overexpression in vitro,we found that p-DRP1 Ser637 expression and DRP1 recruitment to the mitochondria were associated with PINK1.Furthermore,we verified the physical combination of PINK1 and p-DRP1 Ser637.CONCLUSION PINK1 is correlated with mitochondrial fission and apoptosis by regulating DRP1 phosphorylation in intestinal I/R.These results suggest that the PINK1/DRP1 pathway is involved in intestinal I/R injury,and provide a new approach for prevention and treatment.展开更多
[Objectives] To study the effects and mechanism of notoginsenoside Rg1 on the spatial learning and memory and phosphorylated tau protein in the AD( Alzheimer's Disease) model rat. [Methods]The AD model rat was rep...[Objectives] To study the effects and mechanism of notoginsenoside Rg1 on the spatial learning and memory and phosphorylated tau protein in the AD( Alzheimer's Disease) model rat. [Methods]The AD model rat was replicated by injection of Aβ_(25-35) in the left lateral ventricles of SD rats. The low dose( 25 mg/kg),middle dose( 50 mg/kg) and high dose( 100 mg/kg) notoginsenoside Rg1 was used for intragastric administration,respectively,two times every day. After 4 weeks,the Morris water maze test was done to detect the learning and memory capacity,and the immunoblotting,immunohistochemical methods were used to detect the changes in the phosphorylation level and distribution of tau protein in hippocampus of the rats. [Results] After the intracerebroventricular injection of Aβ_(25-35),the learning and memory capacity of the model rats was significantly lower than the learning and memory capacity of the normal control rats. The immunoblotting test results showed that the phosphorylation level of tau protein threonine 231 site( Thr231) in hippocampus was significantly increased,and the nonphosphorylation level was significantly decreased. The morphological testing results showed that the phosphorylation level of tau protein Thr231 of AD model rats was increased markedly in region of DG,CA1 and CA3 of the hippocampus. The intervention of the middle dose notoginsenoside Rg1 could significantly improve the learning and memory capacity of the model rats in Morris water maze. The notoginsenoside Rg1 in three different doses could all reduce the phosphorylation level of tau protein Thr231 in the hippocampal DG,CA1,CA3 regions,and there were no significant differences among the three doses. [Conclusions]The notoginsenoside Rg1 could improve Aβ_(25-35)-induced spatial learning and memory impairment of the AD model rats,and decreased the phosphorylation level of tau protein in hippocampus.展开更多
AIM: To study the effect of Hepatitis C virus nonstructural 5A (HCV NSSA) on IFNα induced signal transducer and activator of transcription-1 (STAT1) phosphorylation and nuclear translocation.METHODS: Expression...AIM: To study the effect of Hepatitis C virus nonstructural 5A (HCV NSSA) on IFNα induced signal transducer and activator of transcription-1 (STAT1) phosphorylation and nuclear translocation.METHODS: Expression of STAT1 Tyr701 phosphorylation at different time points was confirmed by Western blot, and the time point when p-STAT1 expressed most, was taken as the IFN induction time for further studies. Immunocytochemistry was used to confirm the successful transient transfection of NS5A expression plasmid. Immunofluorescene was performed to observe if there was any difference in IFNα-induced STAT1 phosphorylation and nuclear translocation between HCV NSSA-expressed and non-HCV NSSA-expressed cells. Western blot was used to compare the phosphorylated STAT1 protein of the cells.RESULTS: Expression of HCV NS5A was found in the cytoplasm of pCNS5A-transfected Huh7 cells, but not in the PRC/ CMV transfected or non-transfected cells, STAT1 Tyr701 phosphorylation was found strongest in 30 min of IFN induction, STAT1 phosphorylation and nuclear import were much less in the presence of HCV NS5A protein in contrast to pRC/CMV-transfected and non-transfected cells under fluorescent microscopy, which was further confirmed by Western blot.CONCLUSION: HCV NSSA expression plasmid is successfully transfected into Huh7 cells and HCV NS5A protein is expressed in the cytoplasm of the cells. IFN-α is able to induce STAT1 phosphrylation and nuclear translocation, and this effect is inhibited by HCV NS5A protein, which might be another possible resistance mechanism to interferon alpha therapy.展开更多
The Ikaros gene encodes a zinc finger,DNA-binding protein that regulates gene transcription and chromatin remodeling.Ikaros is a master regulator of hematopoiesis and an established tumor suppressor.Moderate alteratio...The Ikaros gene encodes a zinc finger,DNA-binding protein that regulates gene transcription and chromatin remodeling.Ikaros is a master regulator of hematopoiesis and an established tumor suppressor.Moderate alteration of Ikaros activity (e.g.haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells.This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia.The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation.Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization.As a consequence,the ability of Ikaros to regulate cell cycle progression,chromatin remodeling,target gene expression,and thymocyte differentiation are controlled by CK2.In addition,hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitinmediated degradation.Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization.Thus,the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor.This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.展开更多
Endothelin-1 and a number of other genes expressd primarily in endothelial cells(EC)require a functional GATA element in their promoter region.The widely expressed zinc finger DNA binding protein GATA-2 has been chara...Endothelin-1 and a number of other genes expressd primarily in endothelial cells(EC)require a functional GATA element in their promoter region.The widely expressed zinc finger DNA binding protein GATA-2 has been characterized as the likely GATA factor which binds these GATA elements.To understand the specificity of this interaction,and to investigate the potential for regulation of GATA-2 activity,we have studied translation and post-translational modification of the GATA-2 protein. A specific antiserum immunoprecipitated a 52kDa GATA-2 protein from [35-S] methionine-labeled EC,as well as a wide variety of cultured human cell lines which express GATA-2 mRNA. Immunoprecipitation experiments with [32-P]-orthophosphate labeled cells indicated that GATA-2 is similarly phosphorylated in EC and non-EC lines. Thus the apparent cell-specific activity of this transcription factor is not regulated by translation or phosphorylation, and must derive from the interaction of GATA-2 with other nuclear proteins in the EC.Further studies investigated the potential regulation of GATA-2 phosphorylation in EC. Phosphoamino acid analysis indicated that GATA-2 is phosphorylated on serine and threonine residues in EC.The hasal phosphorylation of GATA-2 was rapidly and markedly increased when EC were treated with calcium ionophore A23187, while phorbol ester and forskolin had no effect.Phosphopeptide map analysis showed that A23187 induced phosphorylation of at least two additional sites in GATA-2.Gel shift assays employing nuclear extracts isolated from EC that had been treated with A23187 had a different DNA binding pattern when compared to control.This regulated phosphorylation of GATA-2 may provide a signaling pathway for hormonal regulation of endothelial cell genes such as endothelin-1 which alter their rate of transcription in response to increased intracellular calcium.展开更多
Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still...Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specifcity of prostate-specifc antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modifcation critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phos-phatase, whose specifcity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identifed as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.展开更多
文摘Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.
基金supported by the Department of Science and Technology of Henan Province,Nos.192102310084(to HCZ),222102310143(to DXD)the Youth Fund of School of Basic Medical Sciences of Zhengzhou University,No.JCYXY2017-YQ-07(to DXD)。
文摘We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder.
文摘AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a significant statistical significance (P〈 0.01). CONCLUSION: IL-1β has a direct action on hepatic fibrosis by up-regulating TIMMP-1 mRNA expression in ratessionin in rate HSC.JNK and p38 mitogen-activated protein kinases (MAPKs) are involved in IL-1β-induced TIMMP-1 gene expression, and play a distinct role in this process, indicating that p38 and .INK pathways cooperatively mediate TIMP-1 mRNA expression in rat HSC.
基金the National Natural Science Foundation of China,No.81679154,No.81871547.
文摘BACKGROUND Intestinal ischemia reperfusion(I/R)occurs in various diseases,such as trauma and intestinal transplantation.Excessive reactive oxygen species(ROS)accumulation and subsequent apoptotic cell death in intestinal epithelia are important causes of I/R injury.PTEN-induced putative kinase 1(PINK1)and phosphorylation of dynamin-related protein 1(DRP1)are critical regulators of ROS and apoptosis.However,the correlation of PINK1 and DRP1 and their function in intestinal I/R injury have not been investigated.Thus,examining the PINK1/DRP1 pathway may help to identify a protective strategy and improve the patient prognosis.AIM To clarify the mechanism of the PINK1/DRP1 pathway in intestinal I/R injury.METHODS Male C57BL/6 mice were used to generate an intestinal I/R model via superior mesenteric artery occlusion followed by reperfusion.Chiu’s score was used to evaluate intestinal mucosa damage.The mitochondrial fission inhibitor mdivi-1 was administered by intraperitoneal injection.Caco-2 cells were incubated in vitro in hypoxia/reoxygenation conditions.Small interfering RNAs and overexpression plasmids were transfected to regulate PINK1 expression.The protein expression levels of PINK1,DRP1,p-DRP1 and cleaved caspase 3 were measured by Western blotting.Cell viability was evaluated using a Cell Counting Kit-8 assay and cell apoptosis was analyzed by TUNEL staining.Mitochondrial fission and ROS were tested by MitoTracker and MitoSOX respectively.RESULTS Intestinal I/R and Caco-2 cell hypoxia/reoxygenation decreased the expression of PINK1 and p-DRP1 Ser637.Pretreatment with mdivi-1 inhibited mitochondrial fission,ROS generation,and apoptosis and ameliorated cell injury in intestinal I/R.Upon PINK1 knockdown or overexpression in vitro,we found that p-DRP1 Ser637 expression and DRP1 recruitment to the mitochondria were associated with PINK1.Furthermore,we verified the physical combination of PINK1 and p-DRP1 Ser637.CONCLUSION PINK1 is correlated with mitochondrial fission and apoptosis by regulating DRP1 phosphorylation in intestinal I/R.These results suggest that the PINK1/DRP1 pathway is involved in intestinal I/R injury,and provide a new approach for prevention and treatment.
基金Supported by National Natural Science Foundation of China(81673856,81573865)China Postdoctoral Science Foundation(2016M592319,2017T100542)+1 种基金Youth Project of Hubei University of Traditional Chinese Medicine(Zhong Yi Xiao Zi2015182)PhD Research Foundation of Hubei University of Traditional Chinese Medicine(Zhong Yi Dang Zi201425)
文摘[Objectives] To study the effects and mechanism of notoginsenoside Rg1 on the spatial learning and memory and phosphorylated tau protein in the AD( Alzheimer's Disease) model rat. [Methods]The AD model rat was replicated by injection of Aβ_(25-35) in the left lateral ventricles of SD rats. The low dose( 25 mg/kg),middle dose( 50 mg/kg) and high dose( 100 mg/kg) notoginsenoside Rg1 was used for intragastric administration,respectively,two times every day. After 4 weeks,the Morris water maze test was done to detect the learning and memory capacity,and the immunoblotting,immunohistochemical methods were used to detect the changes in the phosphorylation level and distribution of tau protein in hippocampus of the rats. [Results] After the intracerebroventricular injection of Aβ_(25-35),the learning and memory capacity of the model rats was significantly lower than the learning and memory capacity of the normal control rats. The immunoblotting test results showed that the phosphorylation level of tau protein threonine 231 site( Thr231) in hippocampus was significantly increased,and the nonphosphorylation level was significantly decreased. The morphological testing results showed that the phosphorylation level of tau protein Thr231 of AD model rats was increased markedly in region of DG,CA1 and CA3 of the hippocampus. The intervention of the middle dose notoginsenoside Rg1 could significantly improve the learning and memory capacity of the model rats in Morris water maze. The notoginsenoside Rg1 in three different doses could all reduce the phosphorylation level of tau protein Thr231 in the hippocampal DG,CA1,CA3 regions,and there were no significant differences among the three doses. [Conclusions]The notoginsenoside Rg1 could improve Aβ_(25-35)-induced spatial learning and memory impairment of the AD model rats,and decreased the phosphorylation level of tau protein in hippocampus.
基金Supported by National Natural Science Foundation of ChinaNo. 39670671, No. 30471531
文摘AIM: To study the effect of Hepatitis C virus nonstructural 5A (HCV NSSA) on IFNα induced signal transducer and activator of transcription-1 (STAT1) phosphorylation and nuclear translocation.METHODS: Expression of STAT1 Tyr701 phosphorylation at different time points was confirmed by Western blot, and the time point when p-STAT1 expressed most, was taken as the IFN induction time for further studies. Immunocytochemistry was used to confirm the successful transient transfection of NS5A expression plasmid. Immunofluorescene was performed to observe if there was any difference in IFNα-induced STAT1 phosphorylation and nuclear translocation between HCV NSSA-expressed and non-HCV NSSA-expressed cells. Western blot was used to compare the phosphorylated STAT1 protein of the cells.RESULTS: Expression of HCV NS5A was found in the cytoplasm of pCNS5A-transfected Huh7 cells, but not in the PRC/ CMV transfected or non-transfected cells, STAT1 Tyr701 phosphorylation was found strongest in 30 min of IFN induction, STAT1 phosphorylation and nuclear import were much less in the presence of HCV NS5A protein in contrast to pRC/CMV-transfected and non-transfected cells under fluorescent microscopy, which was further confirmed by Western blot.CONCLUSION: HCV NSSA expression plasmid is successfully transfected into Huh7 cells and HCV NS5A protein is expressed in the cytoplasm of the cells. IFN-α is able to induce STAT1 phosphrylation and nuclear translocation, and this effect is inhibited by HCV NS5A protein, which might be another possible resistance mechanism to interferon alpha therapy.
基金Supported by (in part) An NIH R01 HL095120 grant,a St.Baldrick’s Foundation Career Development Award,the Four Diamonds Fund of the Pennsylvania State University College of Medicine,and the John Wawrynovic Leukemia Research Scholar Endowment (SD)
文摘The Ikaros gene encodes a zinc finger,DNA-binding protein that regulates gene transcription and chromatin remodeling.Ikaros is a master regulator of hematopoiesis and an established tumor suppressor.Moderate alteration of Ikaros activity (e.g.haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells.This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia.The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation.Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization.As a consequence,the ability of Ikaros to regulate cell cycle progression,chromatin remodeling,target gene expression,and thymocyte differentiation are controlled by CK2.In addition,hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitinmediated degradation.Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization.Thus,the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor.This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.
文摘Endothelin-1 and a number of other genes expressd primarily in endothelial cells(EC)require a functional GATA element in their promoter region.The widely expressed zinc finger DNA binding protein GATA-2 has been characterized as the likely GATA factor which binds these GATA elements.To understand the specificity of this interaction,and to investigate the potential for regulation of GATA-2 activity,we have studied translation and post-translational modification of the GATA-2 protein. A specific antiserum immunoprecipitated a 52kDa GATA-2 protein from [35-S] methionine-labeled EC,as well as a wide variety of cultured human cell lines which express GATA-2 mRNA. Immunoprecipitation experiments with [32-P]-orthophosphate labeled cells indicated that GATA-2 is similarly phosphorylated in EC and non-EC lines. Thus the apparent cell-specific activity of this transcription factor is not regulated by translation or phosphorylation, and must derive from the interaction of GATA-2 with other nuclear proteins in the EC.Further studies investigated the potential regulation of GATA-2 phosphorylation in EC. Phosphoamino acid analysis indicated that GATA-2 is phosphorylated on serine and threonine residues in EC.The hasal phosphorylation of GATA-2 was rapidly and markedly increased when EC were treated with calcium ionophore A23187, while phorbol ester and forskolin had no effect.Phosphopeptide map analysis showed that A23187 induced phosphorylation of at least two additional sites in GATA-2.Gel shift assays employing nuclear extracts isolated from EC that had been treated with A23187 had a different DNA binding pattern when compared to control.This regulated phosphorylation of GATA-2 may provide a signaling pathway for hormonal regulation of endothelial cell genes such as endothelin-1 which alter their rate of transcription in response to increased intracellular calcium.
基金Supported by Fundao para a Ciência e Tecnologia(FCT)(PTDC/QUI-BIQ/118492/2010)Fundo Europeu de Desenvolvimento Regional(FEDER)(FCOMP-01-0124-FEDER-020895),Portugal
文摘Prostate cancer is a major public health concern world-wide, being one of the most prevalent cancers in men. Great improvements have been made both in terms of early diagnosis and therapeutics. However, there is still an urgent need for reliable biomarkers that could overcome the lack of cancer-specifcity of prostate-specifc antigen, as well as alternative therapeutic targets for advanced metastatic cases. Reversible phosphorylation of proteins is a post-translational modifcation critical to the regulation of numerous cellular processes. Phosphoprotein phosphatase 1 (PPP1) is a major serine/threonine phos-phatase, whose specifcity is determined by its interacting proteins. These interactors can be PPP1 substrates, regulators, or even both. Deregulation of this protein-protein interaction network alters cell dynamics and underlies the development of several cancer hallmarks. Therefore, the identification of PPP1 interactome in specific cellular context is of crucial importance. The knowledge on PPP1 complexes in prostate cancer remains scarce, with only 4 holoenzymes characterized in human prostate cancer models. However, an increasing number of PPP1 interactors have been identifed as expressed in human prostate tissue, including the tumor suppressors TP53 and RB1. Efforts should be made in order to identify the role of such proteins in prostate carcinogenesis, since only 26 have yet well-recognized roles. Here, we revise literature and human protein databases to provide an in-depth knowledge on the biological significance of PPP1 complexes in human prostate carcinogenesis and their potential use as therapeutic targets for the development of new therapies for prostate cancer.
基金This work was supported by grants from National Natural Science Foundation of China ( No. 39825109) and National Key Project of Basic Science Research (No. G1999054007).