Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° n...Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° north. The study included 10 different treatments and six rose cultivars, altogether 900 plants. The 16 and 20 h LP were applied with or without a dark period of 8 and 4 h·day-1, respectively, by timing the LP in relation to daylight that lasted for 7 - 8 h. Number of days until flowering decreased with an increase in PFD and in LP up to 24 day-1 and was unaffected by the timing of the 16 and 20 h·day-1 LP. Number of flowers and plant dry weight increased 20% to 30% by increasing the PFD. Plant dry weight increased by increasing the LP from 16 to 20 h·day-1 (about 25%), but no effect was found with a further increase to 24 h·day-1. Mean growth rate until flowering increased 30% to 40% by increasing the PFD or by increasing the LP from 16 to 20 h day-1, while little effect was found by a further increase to 24 h·day-1. Increasing the photosynthetic active radiation (PAR) by increasing the LP from 16 to 20 h·day-1 increased the growth rate more than increasing the PFD did. Three of the cultivars were tested for water loss after the detachment of some leaves. Leaves that had developed without a dark period showed a considerably higher water loss than the treatments that included a dark period of 4 or 8 h·day-1. The keeping quality at indoor conditions, however, was unaffected by the treatment due to sufficient watering. Powdery mildew developed significantly more on plants grown with a dark period of 8 h as compared with the other treatments. It was concluded that 20 h·day-1 LP including a dark period of 4 h·day-1 and a PFD of at least 150 μmol·m-2·s-1 should be applied to miniature roses during the winter months in order to effectively produce miniature pot roses with a high quality.展开更多
The sunlight provides essential light and temperature for photosynthesis in protected cultivation.Sunlight is one of the important plant living environment factors in facility agriculture.Most of the existing light de...The sunlight provides essential light and temperature for photosynthesis in protected cultivation.Sunlight is one of the important plant living environment factors in facility agriculture.Most of the existing light detecting equipment are used to detect the whole band of Photosynthetic Available Radiatio(PAR),which is unable to meet the demand of modern photosynthesis research.In order to solve the problem,a function model between single-band spectral Photon Flux Density(PFD)and solar altitude was established through experiments.Based on the model,a sunlight multiband PFD detecting device was designed,which was using a PAR sensor as the detecting node and microcontroller as the core part.This device can detect the PFD of different bands in PAR by using a single sensor.Meanwhile,detecting band can be set by using keyboard according to the characteristic of spectrum absorption of different plants.The secure digital memory card(SD card)was used in the device to store data.Results of the field test showed that determination coefficients of the device testing red and blue PFD with standard value were 0.986 and 0.993 respectively.The device with little relative error and high reliability could be applied in facility light detecting.展开更多
Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at ...Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at six photon flux densities (85, 130, 170, 215, 255 and 300 μmol·m-2·s-1, PFD) during lighting periods of 20 h·day-1 at three air temperatures (18°C, 21°C and 24°C) in midwinter at latitude 59° north. This corresponded to photosynthetic active radiations (PAR) ranging from 6.1 to 21.6 mol·m-2·day-1. Time until flowering decreased in all species except Cyclamen when the temperature increased from 18°C to 21°C, particularly at lower PFD levels. A further increase in temperature, from 21°C to 24°C, clearly decreased time until flowering in six of the ten tested species. Generally, this represented a reduction in the time until flowering between 20% and 40%. The dry weight of the plants at time of flowering increased up to 170 μmol·m-2·s-1 PFD (12.2 mol·m-2·day-1 PAR) in Hibiscus, miniature rose, Kalanchoe and Pelargonium, while the dry weight reached a maximum at 85 to 130 μmol·m-2·s-1 PFD mol·m-2·day-1 (6.1 to 9.4 mol·m-2·day-1)in the other species. Based on the present results a PAR level of 6 to 8 mol m-2·day-1 is recommended for Calceolaria and Cyclamen, of 8 to 10 mol·m-2·day-1 for Sinningia, Gerbera, Kalanchoe, Hydrangea and Begonia, of 10 to 12 mol·m-2·day-1 for Pelargonium and of 12 to 15 mol·m-2 day-1 for Hibiscus and miniature roses.展开更多
If low night temperatures can be combined with high day temperatures, providing optimal growth conditions for plants, a significant energy saving can be achieved in greenhouses. Lowering the night temperature from 18&...If low night temperatures can be combined with high day temperatures, providing optimal growth conditions for plants, a significant energy saving can be achieved in greenhouses. Lowering the night temperature from 18°C to 10°C-11°C for 8 h had no negative effect on the CO2 exchange rate (CER) during the following light period in tomato. This was found both in plants grown in artificial light only or in combination with daylight. Allowing the temperature to increase from 20°C to about 40°C, in parallel with an increasing solar photon flux density (PFD) from 0 up to about 800 μmol·m-2·s-1 in the greenhouse during summer, progressively increased CER when the CO2 concentration was maintained at 900 μmol·mol-1. At 400 μmol·mol-1 CO2, maximum CER was reached at about 600 μmol·m-2·s-1 PFD combined with a temperature of 32°C, and leveled out with a further increase in PFD and temperature. Maximum CER at high CO2 concentration was around 100% higher than at low CO2 level. Under early autumn conditions, CER increased up to about 500 μmol·m-2·s-1 PFD/32°C at low CO2 and up to about 600 μmol·m-2·s-1 PFD/35°C at high CO2. An elevated CO2 level doubled the CER in this experiment as well. Measurements of chlorophyll fluorescence showed no effect of low night temperature, high day temperature or CO2 concentration on the quantum yield of photosynthesis, indicating that no treatment negatively affected the efficiency of the photosynthetic apparatus. The results showed that low night temperatures may be combined with very high day temperatures without any loss of daily photosynthesis particularly in a CO2 enriched atmosphere. If this can be combined with normal plant development and no negative effects on the yield, significant energy savings can be achieved in greenhouses.展开更多
High Altitude Platform(HAP)systems comprise airborne base stations deployed above 20 km and below 50 km to provide wireless access to devices in large areas.In this paper,two types of applications using HAP systems:on...High Altitude Platform(HAP)systems comprise airborne base stations deployed above 20 km and below 50 km to provide wireless access to devices in large areas.In this paper,two types of applications using HAP systems:one with HAP Station(HAPS)and the other with HAPS as International Mobile Telecommunication(IMT)Base Station(HIBS)are introduced.The HAP system with HAPS has already received wide recognition from the academia and the industry and is considered as an effective solution to provide internet access between fixed points in suburban and rural areas as well as emergencies.HAP systems with HIBS to serve IMT user terminal have just started to draw attention from researchers.The HIBS application is expected to be an anticipate mobile service application complementing the IMT requirement for cell phone or other mobile user terminals in which the service field of HAPS application cannot reach.After describing and characterizing the two types of systems,coexistence studies and simulation results using both the Power Fluxed Density(PFD)mask and separation distance based methods are presented in this paper.This paper also predicts future trends of the evolution paths for the HAP systems along with challenges and possible solutions from the standpoint of system architectures and spectrum regulation.展开更多
文摘Miniature roses (Rosa sp.) were grown at 100 and 150 μmol m-2·s-1 photon flux densities (PFD) with 16, 20 and 24 h·day-1 lighting periods (LP) in a greenhouse compartment in midwinter at latitude 59° north. The study included 10 different treatments and six rose cultivars, altogether 900 plants. The 16 and 20 h LP were applied with or without a dark period of 8 and 4 h·day-1, respectively, by timing the LP in relation to daylight that lasted for 7 - 8 h. Number of days until flowering decreased with an increase in PFD and in LP up to 24 day-1 and was unaffected by the timing of the 16 and 20 h·day-1 LP. Number of flowers and plant dry weight increased 20% to 30% by increasing the PFD. Plant dry weight increased by increasing the LP from 16 to 20 h·day-1 (about 25%), but no effect was found with a further increase to 24 h·day-1. Mean growth rate until flowering increased 30% to 40% by increasing the PFD or by increasing the LP from 16 to 20 h day-1, while little effect was found by a further increase to 24 h·day-1. Increasing the photosynthetic active radiation (PAR) by increasing the LP from 16 to 20 h·day-1 increased the growth rate more than increasing the PFD did. Three of the cultivars were tested for water loss after the detachment of some leaves. Leaves that had developed without a dark period showed a considerably higher water loss than the treatments that included a dark period of 4 or 8 h·day-1. The keeping quality at indoor conditions, however, was unaffected by the treatment due to sufficient watering. Powdery mildew developed significantly more on plants grown with a dark period of 8 h as compared with the other treatments. It was concluded that 20 h·day-1 LP including a dark period of 4 h·day-1 and a PFD of at least 150 μmol·m-2·s-1 should be applied to miniature roses during the winter months in order to effectively produce miniature pot roses with a high quality.
基金the financial support by the research grants from Doctoral Programs of Shaanxi Province Scientific Plan(2013K0203)the Key Science and Technology Program of Shaanxi Province,China(2013K06-40)Programs of Xi'an Modern Agriculture Promote Plan(2013083).
文摘The sunlight provides essential light and temperature for photosynthesis in protected cultivation.Sunlight is one of the important plant living environment factors in facility agriculture.Most of the existing light detecting equipment are used to detect the whole band of Photosynthetic Available Radiatio(PAR),which is unable to meet the demand of modern photosynthesis research.In order to solve the problem,a function model between single-band spectral Photon Flux Density(PFD)and solar altitude was established through experiments.Based on the model,a sunlight multiband PFD detecting device was designed,which was using a PAR sensor as the detecting node and microcontroller as the core part.This device can detect the PFD of different bands in PAR by using a single sensor.Meanwhile,detecting band can be set by using keyboard according to the characteristic of spectrum absorption of different plants.The secure digital memory card(SD card)was used in the device to store data.Results of the field test showed that determination coefficients of the device testing red and blue PFD with standard value were 0.986 and 0.993 respectively.The device with little relative error and high reliability could be applied in facility light detecting.
基金funded by the Norwegian Research Council and the Norwegian Growers Association
文摘Hibiscus rosa-sinensis, Rosa sp. (miniature roses), Sinningia speciosa, Gerbera hybrida, Kalanchoe blossfeldiana, Hydrangea, Begonia x hiemalis, Calceolaria, Cyclamen persicum and Pelargonium domesticum were grown at six photon flux densities (85, 130, 170, 215, 255 and 300 μmol·m-2·s-1, PFD) during lighting periods of 20 h·day-1 at three air temperatures (18°C, 21°C and 24°C) in midwinter at latitude 59° north. This corresponded to photosynthetic active radiations (PAR) ranging from 6.1 to 21.6 mol·m-2·day-1. Time until flowering decreased in all species except Cyclamen when the temperature increased from 18°C to 21°C, particularly at lower PFD levels. A further increase in temperature, from 21°C to 24°C, clearly decreased time until flowering in six of the ten tested species. Generally, this represented a reduction in the time until flowering between 20% and 40%. The dry weight of the plants at time of flowering increased up to 170 μmol·m-2·s-1 PFD (12.2 mol·m-2·day-1 PAR) in Hibiscus, miniature rose, Kalanchoe and Pelargonium, while the dry weight reached a maximum at 85 to 130 μmol·m-2·s-1 PFD mol·m-2·day-1 (6.1 to 9.4 mol·m-2·day-1)in the other species. Based on the present results a PAR level of 6 to 8 mol m-2·day-1 is recommended for Calceolaria and Cyclamen, of 8 to 10 mol·m-2·day-1 for Sinningia, Gerbera, Kalanchoe, Hydrangea and Begonia, of 10 to 12 mol·m-2·day-1 for Pelargonium and of 12 to 15 mol·m-2 day-1 for Hibiscus and miniature roses.
文摘If low night temperatures can be combined with high day temperatures, providing optimal growth conditions for plants, a significant energy saving can be achieved in greenhouses. Lowering the night temperature from 18°C to 10°C-11°C for 8 h had no negative effect on the CO2 exchange rate (CER) during the following light period in tomato. This was found both in plants grown in artificial light only or in combination with daylight. Allowing the temperature to increase from 20°C to about 40°C, in parallel with an increasing solar photon flux density (PFD) from 0 up to about 800 μmol·m-2·s-1 in the greenhouse during summer, progressively increased CER when the CO2 concentration was maintained at 900 μmol·mol-1. At 400 μmol·mol-1 CO2, maximum CER was reached at about 600 μmol·m-2·s-1 PFD combined with a temperature of 32°C, and leveled out with a further increase in PFD and temperature. Maximum CER at high CO2 concentration was around 100% higher than at low CO2 level. Under early autumn conditions, CER increased up to about 500 μmol·m-2·s-1 PFD/32°C at low CO2 and up to about 600 μmol·m-2·s-1 PFD/35°C at high CO2. An elevated CO2 level doubled the CER in this experiment as well. Measurements of chlorophyll fluorescence showed no effect of low night temperature, high day temperature or CO2 concentration on the quantum yield of photosynthesis, indicating that no treatment negatively affected the efficiency of the photosynthetic apparatus. The results showed that low night temperatures may be combined with very high day temperatures without any loss of daily photosynthesis particularly in a CO2 enriched atmosphere. If this can be combined with normal plant development and no negative effects on the yield, significant energy savings can be achieved in greenhouses.
文摘High Altitude Platform(HAP)systems comprise airborne base stations deployed above 20 km and below 50 km to provide wireless access to devices in large areas.In this paper,two types of applications using HAP systems:one with HAP Station(HAPS)and the other with HAPS as International Mobile Telecommunication(IMT)Base Station(HIBS)are introduced.The HAP system with HAPS has already received wide recognition from the academia and the industry and is considered as an effective solution to provide internet access between fixed points in suburban and rural areas as well as emergencies.HAP systems with HIBS to serve IMT user terminal have just started to draw attention from researchers.The HIBS application is expected to be an anticipate mobile service application complementing the IMT requirement for cell phone or other mobile user terminals in which the service field of HAPS application cannot reach.After describing and characterizing the two types of systems,coexistence studies and simulation results using both the Power Fluxed Density(PFD)mask and separation distance based methods are presented in this paper.This paper also predicts future trends of the evolution paths for the HAP systems along with challenges and possible solutions from the standpoint of system architectures and spectrum regulation.