期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Applied bias photon-to-current conversion efficiency of ZnO enhanced by hybridization with reduced graphene oxide 被引量:1
1
作者 Sharifah Bee Abdul Hamid Swe Jyan Teh +2 位作者 Chin Wei Lai Siglinda Perathoner Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期302-308,共7页
The role of reduced graphene oxide(rGO) in the enhancement of photo-conversion efficiency of ZnO films for photoelectrochemical(PEC) water-splitting applications was analyzed. ZnO and rGO-hybridized ZnO(rGO/ZnO)... The role of reduced graphene oxide(rGO) in the enhancement of photo-conversion efficiency of ZnO films for photoelectrochemical(PEC) water-splitting applications was analyzed. ZnO and rGO-hybridized ZnO(rGO/ZnO) films were prepared via a two-step electrochemical deposition method followed by annealing at 300 °C under argon gas flow. The physical, optical and electrochemical properties of the films were characterized to identify the effect of rGO-hybridization on the applied bias photon-to-current efficiency(ABPE) of ZnO. Scanning electron microscopy and X-ray diffraction indicated the formation of verticallyaligned, wurtzite-phase ZnO nanorods. Diffuse-reflectance UV–visible spectroscopy indicated that rGO-hybridization was able to increase the light absorption range of the rGO/ZnO film. UPS analysis showed that hybridization with rGO increased the band gap of ZnO(3.56 eV) to 3.63 eV for rGO/ZnO sample,which may be attributed to the Burstein–Moss effect. Photoluminescence(PL) spectra disclosed that rGOhybridization suppressed electron-hole recombination due to crystal defects. Linear sweep voltammetry of the prepared thin films showed photocurrent density of 1.0 and 1.8 m A/cm;for ZnO and rGO/ZnO at+0.7 V, which corresponded to an ABPE of 0.55% and 0.95%, respectively. Thus, this report highlighted the multi-faceted role of rGO-hybridization in the enhancement of ZnO photo-conversion efficiency. 展开更多
关键词 Zinc oxide Photoelectrochemical water-splitting Reduced graphene oxide photo-conversion efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部