Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utili...Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries,resulting in battery performance deterioration with a reduced capacity.Here,we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries.Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders,considering physicochemical properties such as mechanical properties and adhesion.The introduction of abundant sulfonate groups of binders(i)allows fast and sufficient electrolyte wetting,and(ii)improves ionic conduction in thick electrodes,enabling a significant increase in reversible capacities under various current densities.Further,the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes.Overall,our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.展开更多
Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optim...Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.展开更多
The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalin...The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1-6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%.展开更多
Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L ...Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L NaOH-HCI pretreated substrate are adherent, but there are cracks for the sample with 33% Ta. X-ray photoelectron spectroscopy results show that Ti and Ta exist as TiP2 and Ta205 in the film, and A1 element is not detectable. X-ray diffraction and Raman scattering analyses reveal that the addition of Ta decreases crystallization of the films. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the coating samples markedly improve the corrosion resistance compared with the polished sample. The addition of Ta impedes UV light-induced hydrophilic conversion of the coating samples. The sample with 20% Ta has enough film integrity and hydrophilic conversion rate, and is expected to possess good biological properties.展开更多
Porous polyvinylidene fluoride(PVDF)membranes blended with LiCl are prepared through the phase inversion method to obtain a good support layer for air dehumidification.The hydrophilicity of the resulting membrane is...Porous polyvinylidene fluoride(PVDF)membranes blended with LiCl are prepared through the phase inversion method to obtain a good support layer for air dehumidification.The hydrophilicity of the resulting membrane is evaluated by water contact angle measurements and vapor adsorption tests.The moisture permeation performance of the membrane is measured by permeation tests in terms of total mass transfer coefficients and moisture permeability rates.It is found that water contact angles and water vapor adsorption capacities increase with the increasing LiCl content in the casting solution.As the LiCl content increases,the total mass transfer coefficient increases slightly at a low LiCl content(below 2.5%)and then improves greatly at a high LiCl content(above 2.5%),whereas the moisture permeation rate increases.The results demonstrate that LiCl can remarkably improve the hydrophilicity of PVDF membranes,and then greatly enhance moisture permeation performance.展开更多
Copolymerization of chitosan selectively grafted by polyethylene glycol was prepared. Chitosan was selectively grafted by monomethoxy polyethylene glycol(mPEG-OH), which contained a hydroxyl group combining with hex...Copolymerization of chitosan selectively grafted by polyethylene glycol was prepared. Chitosan was selectively grafted by monomethoxy polyethylene glycol(mPEG-OH), which contained a hydroxyl group combining with hexamethylene diisocyanate(HDI) to form a novel macromonomer namely monomethoxy polyethylene glycol isocyanate(mPEG-NCO) containing a isocyanate group with higher chemical activity in ethyl glyoxalate solution absolutely without water. The selective grafted copolymerization of Chitosan with mPEG-NCO was conducted under heterogeneous conditions as suspension in dimethylformamide. The hydrophilic copolymers of chitosan were prepared by condensation reaction of isocyanate group on mPEG- NCO with hydroxy groups on chitosan chains because amino groups on chitosan chains were protected by complexion formation with copper ions. The effect of reaction condition on the grafting extents was discussed. Swelling properties of mPEG-g-CS were researched. The graft copolymer mPEG-g-CS was characterized by the infrared spectra. The experimental result showed that the copper ions were very effective to protect amino groups from condensation reaction. The swelling degree in water increases with adding of grafting ratio. The maximum swelling degree was up to above 132% when the grafting ratio was about 270%. The graft copolymer can be soluble partially in pure water.展开更多
Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pres...Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pressure plasma jet (APPJ) system. (a) PE films were directly modified by APPJ using a gas mixture of He and 02. (b) Acrylic acid (AA) was introduced into the system and a polymer acrylic acid (PAA) coating was deposited onto the PE films. (c) AA was grafted onto the PE surface activated by plasma pre-treatment. It was found that the hydrophilicity of the PE films was significantly improved for all the three methods. However, the samples modified by Process (a) showed hydrophobicity recovery after a storage time of 20 days while no significant change was found in samples modified by Process (b) and Process (c). The Fourier transform infrared spectroscopy (FTIR) results indicated that the most intensive C=O peak was detected on the PE surface modified by Process (c). According to the X-ray photoelectron spectroscopy (XPS) analysis, the ratios of oxygen-containing polar groups for samples modified by Process (b) and Process (c) were higher than that modified by Process (a).展开更多
Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to o...Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to overcome the shortcomings of low-dimensional nanowires.However,typical strategies for constructing these superstructures are restricted to complicated and harsh synthetic conditions,not to mention unique 3D structures with advanced properties beyond common superstructures.Herein,we report an unusual network ofα-MnO_(2)nanowires with structure-induced hydrophilicity and conductivity.In the network,the nanowires are interconnected from all directions by nodes,and the 3D network structure is formed from the endless connection of nodes in a node-by-node way.The unique network structure brings about high hydrophilicity and conductivity,both of which are positive factors for an efficient electrocatalyst.Accordingly,the α-MnO_(2) network was tested for electrocatalytic water oxidation and showed significantly enhanced activity compared with isolatedα-MnO_(2)nanowires and 3Dα-MnO_(2)microspheres.This study not only provides a synthetic route toward an advanced network structure but also a new idea for the design of materials for electrochemistry with both efficient mass diffusion and charge transfer.展开更多
Three series of amorphous copolymers containing azobenzene groups with various substituents and certain amounts of crosslinkable acrylic groups were prepared. The cross-linked polymer films were obtained by thermal po...Three series of amorphous copolymers containing azobenzene groups with various substituents and certain amounts of crosslinkable acrylic groups were prepared. The cross-linked polymer films were obtained by thermal polymerization of the acrylic groups in the copolymers, during which, by controlling the time of cross-linking reaction, the films can be made with different cross-linking degree (from 0 to 32%, which was monitored by FT-IR spectra measurement). Photo-induced alignment process of the films was performed under irradiation with linearly polarized light at 442 nm, and the effect of cross-linking degree on the photo-induced alignment rate was investigated. The dynamics of the photo-induced alignment was analyzed with biexponential curve fitting. The photo-induced alignment rate and the maximum transmittance of the films decreased because of the cross-linking. Furthermore, for the cross-linked samples, it was found that their saturated value of transmittances keep constant after repeated "writing" and "erasing" cycles. The findings reveal that the cross-linking of the film can effectively restrain the phototactic mass transport of azopolymer during irradiation by polarized light. The relationship between the cross-linking degree and the photo-induced alignment behavior of azopolymer is discussed in detail.展开更多
Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient gratin...Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.展开更多
The emeraldine base form of polyaniline (PANI) can be doped by a photo-induced doping method. In this method a. copolymer of vinylidene chloride and methyl acrylate (VCMAC) was used as photo acid generator which can r...The emeraldine base form of polyaniline (PANI) can be doped by a photo-induced doping method. In this method a. copolymer of vinylidene chloride and methyl acrylate (VCMAC) was used as photo acid generator which can release proton when it is exposed to ultraviolet light (lambda = 254 nm). The structure of PANI-VCMAC system before and after irradiation was characterized by elemental analysis, IR, XTP, anti SEM images. Results obtained indicate that the photo-induced doping characteristics, such as doping position and type of charge carriers, are similar to that of PANI doped with HCl. The poor room-temperature conductivity (similar to 10-S-5/cm) of PANI-VCMAC system after irradiation may be due to low doping degree (similar to pH=3) and the difference in morphology as compared with PANI-HCl film.展开更多
Enhancement of the surface hydrophilicity of biodegradable poly (D,L-lactic acid) (PLA) films is studied. The PLA films were treated by nitrogen plasma (PLA-N2) and nitro- gen/hydrogen plasma (PLA-N2/H2), resp...Enhancement of the surface hydrophilicity of biodegradable poly (D,L-lactic acid) (PLA) films is studied. The PLA films were treated by nitrogen plasma (PLA-N2) and nitro- gen/hydrogen plasma (PLA-N2/H2), respectively. The surface properties and microstructure of PLA-N2 and PLA-N2/H2 were studied by static contact angle measurement, surface free energy calculation, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). It is confirmed that the surface hydrophilicity of PLA-N2 and PLA-N2/H2 was higher than that of pristine PLA, and the surface hydrophilicity of PLA-N2 films was better than that of PLA-N2/H2.展开更多
Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of t...Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.展开更多
This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact ...This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafiuoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested.展开更多
Hydrogen peroxide( H_2O_2) is applied for surface modification of polyglycolic acid( PGA) fibers in order to enhance the hydrophilicity and cytocompatibility of PGA fibers effectively,and maintain the breaking strengt...Hydrogen peroxide( H_2O_2) is applied for surface modification of polyglycolic acid( PGA) fibers in order to enhance the hydrophilicity and cytocompatibility of PGA fibers effectively,and maintain the breaking strength as the same time. PGA fibers are dipped in H_2O_2 solution a certain time for modification. Scanning electron microscopy( SEM) was used to observe the surface morphology of PGA fibers before and after modification. The varying of PGA macromolecule was examined with Fourier transform infrared spectroscopy( FTIR) analyses. X-ray diffraction( XRD) and differential scanning calorimetry( DSC) analysis showed that crystallinity slightly decreases. Mechanical performance test showed tensile force of modified PGA fiber was increased. The water contact angle test indicated the improving of hydrophilic. A cell proliferation assay showed that fibroblast cells attach and proliferate well on the fibers, which meant the modified fibers possess good cytocompatibility. These results suggest that H_2O_2 surface modification is easy to operate and a advantageous modification method for PGA fibers.展开更多
Plasma-assisted chemical vapor deposition (PCVD) was applied for amorphous TiOx deposition on Pyrex-glass substrate at low temperature below 90°C to control orientation of anatase-TiO2 layer by low pressure chemi...Plasma-assisted chemical vapor deposition (PCVD) was applied for amorphous TiOx deposition on Pyrex-glass substrate at low temperature below 90°C to control orientation of anatase-TiO2 layer by low pressure chemical vapor deposition (LPCVD) using TTIP-single precursor. Preferentially -oriented anatase-TiO2 layer was successfully deposited with the orientation ratio as high as 68% on the initial layer of the thickness around 70 nm. Contact angle water was quickly decreased by UV-irradiation on the highly -oriented TiO2 layer comparing with the layer directly deposited on glass, whereas surface roughness on the former was significantly reduced in comparison to that on the latter. Methyleneblue (MB) aqueous solution with the concentration of 2 mmol/L was used to evaluate photocatalytic property on the layer. Rate constant of MB-decomposition via first order kinetics increased with the orientation ratio above 60% was resulted in 2.3 × 10-1?min-1 for the layer with -orientation ratio of 68%, whereas the constant was 2.8 × 10-3 min-1 for the layer directly deposited on glass.展开更多
Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample ...Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.展开更多
The thermodynamic properties of 135 polychlorinated phenothiazines (PCPTZs) in the standard state are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B...The thermodynamic properties of 135 polychlorinated phenothiazines (PCPTZs) in the standard state are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G^** level, and their octanol-water partition coefficients (logKow) are calculated based on group contributions. The chlorine substitution pattern strongly influenced the thermodynamic properties and hydrophilicity of the compounds. The thermodynamic properties of congeners also depend on the chlorine substitution pattern. The effect of chlorine substitution pattern is quantitatively studied by considering the mmaber and position of Cl atom substitution (Npcs). The results show that the Npcs model may be used to predict the thermodynamic properties and hydrophilicity for all 135 PCPTZ congeners.展开更多
GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by...GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by UV-1601 speetrophotometer and optical second-order nonlinear tester. The results show that the transmittance of the samples around 532 nm obviously decreases and Bragg reflector forms, which is due to the production of photon-generated carriers. With the increase of laser pulse energy or the extension of irradiation duration, the Bragg reflector increases and gradually tends to be stable. These can be ascribed to the excitation- capture process of the carriers. After irradiation, the relaxation phenomenon results from the release of part of the absorbed energy in the glass matrix. And the fitting equation of the relaxation process is consistent with a conventional Kohlrausch stretched exponential function. The origin of the second harmonic generation (SHG) is because of the dipole reorientation caused by the photo-induced anisotropy in the glass.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1070168,2020R1C1C1004322)the Korea Institute of Industrial Technology as Development of core technology for smart wellness care based on cleaner production process technology(KITECH-PEH23030)+1 种基金supported by the Renewable Surplus Sector Coupling Technology Program of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20226210100050)the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.CPS21141-100)。
文摘Thick electrodes can substantially enhance the overall energy density of batteries.However,insufficient wettability of aqueous electrolytes toward electrodes with conventional hydrophobic binders severely limits utilization of active materials with increasing the thickness of electrodes for aqueous batteries,resulting in battery performance deterioration with a reduced capacity.Here,we demonstrate that controlling the hydrophilicity of the thicker electrodes is critical to enhancing the overall energy density of batteries.Hydrophilic binders are synthesized via a simple sulfonation process of conventional polyvinylidene fluoride binders,considering physicochemical properties such as mechanical properties and adhesion.The introduction of abundant sulfonate groups of binders(i)allows fast and sufficient electrolyte wetting,and(ii)improves ionic conduction in thick electrodes,enabling a significant increase in reversible capacities under various current densities.Further,the sulfonated binder effectively inhibits the dissolution of cathode materials in reactive aqueous electrolytes.Overall,our findings significantly enhance the energy density and contribute to the development of practical zinc-ion batteries.
基金financially supported by the National Key R&D Program of China(2022YFA1503003)the National Natural Science Foundation of China(91961111,22271081)+3 种基金the Natural Science Foundation of Heilongjiang Province(ZD2021B003)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020004)The Basic Research Fund of Heilongjiang University in Heilongjiang Province(2021-KYYWF-0039)the Heilongjiang University Excellent Youth Foundation。
文摘Hydrogen evolution reaction(HER)and urea oxidation reaction(UOR)are key reactions of the watercycling associated catalytic process/device.The design of catalysts with a super-hydrophilic/aerophobic structure and optimized electron distribution holds great promise.Here,we have designed a threedimensional(3D)hollow Ni/NiMoN hierarchical structure with arrayed-sheet surface based on a onepot hydrothermal route for efficient urea-assisted HER based on a simple hydrothermal process.The Ni/NiMoN catalyst exhibits super-hydrophilic/aerophobic properties with a small droplet contact angle of 6.07°and an underwater bubble contact angle of 155.7°,thus facilitating an escape of bubbles from the electrodes.Density functional theory calculations and X-ray photoelectron spectroscopy results indicate the optimized electronic structure at the interface of Ni and NiMoN,which can promote the adsorption/desorption of reactants and intermediates.The virtues combining with a large specific surface area endow Ni/NiMoN with efficient catalytic activity of low potentials of 25 mV for HER and 1.33 V for UOR at10 mA cm^(-2).The coupled HER and UOR system demonstrates a low cell voltage of 1.42 V at 10 mA cm^(-2),which is approximately 209 mV lower than water electrolysis.
基金supported by the National Natural Science Foundation of China(21868012 and 22368025)Jiangxi Provincial Department of Science and Technology(20171BCB24005 and 20202BAB203011).
文摘The hydrophilic ZSM-5 zeolite membranes are applied to separate the inorganic acid solutions and inorganic acid/inorganic salt mixtures by pervaporation,and the membrane presents good stability,dehydration,and desalination performance.Influences of inorganic acid type(H_(2)SO_(4),H_(3)PO_(4),HNO_(3),and HCl),H_(2)SO_(4)concentration(1-6 mol·L^(-1)),test temperature(60-90℃)and inorganic acid/inorganic salt type(2 mol·L^(-1)H_(2)SO_(4)and sulfate,2 mol·L^(-1)H3PO4 and phosphate)on the pervaporation performance are investigated in this work.Either for concentrating 3%(mass)H_(2)SO_(4)solution or consecutive dehydrating 20%(mass)H_(2)SO_(4)solution,the hydrophilic ZSM-5 zeolite membrane has a good dehydration performance and stability.Even though the H_(2)SO_(4)concentration and test temperature are increased to 6 M and 90℃,only H_(2)O molecules could pass through the membrane and pH value of the permeation is kept neutral.Besides,the membrane has good dehydration and desalination performance for H_(2)SO_(4)/sulfates and H_(3)PO_(4)/phosphate mixtures,and the rejection of natrium salt,molysite,and magnesium is almost 100%.
基金Project(xjj2011096)supported by the Fundamental Research Fund for the Central Universities,ChinaProjects(50901058,51374174)supported by the National Natural Science Foundation of China
文摘Ta-containing TiO2 films with Ta contents of 5%, 20%, 33% (mole fraction) were sol-gel coated on the surface roughened Ti6AI4V alloy by dip coating method for biomedical applications. The Ta-TiO2 films on 1.5 mol/L NaOH-HCI pretreated substrate are adherent, but there are cracks for the sample with 33% Ta. X-ray photoelectron spectroscopy results show that Ti and Ta exist as TiP2 and Ta205 in the film, and A1 element is not detectable. X-ray diffraction and Raman scattering analyses reveal that the addition of Ta decreases crystallization of the films. Potentiodynamic polarization test in a Ca-free Hank's balanced solution demonstrates that the coating samples markedly improve the corrosion resistance compared with the polished sample. The addition of Ta impedes UV light-induced hydrophilic conversion of the coating samples. The sample with 20% Ta has enough film integrity and hydrophilic conversion rate, and is expected to possess good biological properties.
基金The National Natural Science Foundation of China(No.50676034)the National High Technology Research and Development Program of China(863 Program)(No.2008AA05Z206)
文摘Porous polyvinylidene fluoride(PVDF)membranes blended with LiCl are prepared through the phase inversion method to obtain a good support layer for air dehumidification.The hydrophilicity of the resulting membrane is evaluated by water contact angle measurements and vapor adsorption tests.The moisture permeation performance of the membrane is measured by permeation tests in terms of total mass transfer coefficients and moisture permeability rates.It is found that water contact angles and water vapor adsorption capacities increase with the increasing LiCl content in the casting solution.As the LiCl content increases,the total mass transfer coefficient increases slightly at a low LiCl content(below 2.5%)and then improves greatly at a high LiCl content(above 2.5%),whereas the moisture permeation rate increases.The results demonstrate that LiCl can remarkably improve the hydrophilicity of PVDF membranes,and then greatly enhance moisture permeation performance.
基金Funded by the Program of Beijing Municipal Commission of Education
文摘Copolymerization of chitosan selectively grafted by polyethylene glycol was prepared. Chitosan was selectively grafted by monomethoxy polyethylene glycol(mPEG-OH), which contained a hydroxyl group combining with hexamethylene diisocyanate(HDI) to form a novel macromonomer namely monomethoxy polyethylene glycol isocyanate(mPEG-NCO) containing a isocyanate group with higher chemical activity in ethyl glyoxalate solution absolutely without water. The selective grafted copolymerization of Chitosan with mPEG-NCO was conducted under heterogeneous conditions as suspension in dimethylformamide. The hydrophilic copolymers of chitosan were prepared by condensation reaction of isocyanate group on mPEG- NCO with hydroxy groups on chitosan chains because amino groups on chitosan chains were protected by complexion formation with copper ions. The effect of reaction condition on the grafting extents was discussed. Swelling properties of mPEG-g-CS were researched. The graft copolymer mPEG-g-CS was characterized by the infrared spectra. The experimental result showed that the copper ions were very effective to protect amino groups from condensation reaction. The swelling degree in water increases with adding of grafting ratio. The maximum swelling degree was up to above 132% when the grafting ratio was about 270%. The graft copolymer can be soluble partially in pure water.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175157)the Zhejiang Provincial Key Innovation Team,China(Grant No.2012R10038)the 521 Talent Project of Zhejiang Sci-Tech University,China
文摘Three different low-temperature plasma-based methods were used to improve the surface hydrophilicity of polyethy- lene (PE) films, and all the modification processes were carried out by employing an atmospheric pressure plasma jet (APPJ) system. (a) PE films were directly modified by APPJ using a gas mixture of He and 02. (b) Acrylic acid (AA) was introduced into the system and a polymer acrylic acid (PAA) coating was deposited onto the PE films. (c) AA was grafted onto the PE surface activated by plasma pre-treatment. It was found that the hydrophilicity of the PE films was significantly improved for all the three methods. However, the samples modified by Process (a) showed hydrophobicity recovery after a storage time of 20 days while no significant change was found in samples modified by Process (b) and Process (c). The Fourier transform infrared spectroscopy (FTIR) results indicated that the most intensive C=O peak was detected on the PE surface modified by Process (c). According to the X-ray photoelectron spectroscopy (XPS) analysis, the ratios of oxygen-containing polar groups for samples modified by Process (b) and Process (c) were higher than that modified by Process (a).
文摘Nanowires with anisotropic morphologies have been applied in various scientific and technological areas.It is also widely employed to fabricate nanowires into high-dimensional superstructures(arrays,networks etc.)to overcome the shortcomings of low-dimensional nanowires.However,typical strategies for constructing these superstructures are restricted to complicated and harsh synthetic conditions,not to mention unique 3D structures with advanced properties beyond common superstructures.Herein,we report an unusual network ofα-MnO_(2)nanowires with structure-induced hydrophilicity and conductivity.In the network,the nanowires are interconnected from all directions by nodes,and the 3D network structure is formed from the endless connection of nodes in a node-by-node way.The unique network structure brings about high hydrophilicity and conductivity,both of which are positive factors for an efficient electrocatalyst.Accordingly,the α-MnO_(2) network was tested for electrocatalytic water oxidation and showed significantly enhanced activity compared with isolatedα-MnO_(2)nanowires and 3Dα-MnO_(2)microspheres.This study not only provides a synthetic route toward an advanced network structure but also a new idea for the design of materials for electrochemistry with both efficient mass diffusion and charge transfer.
基金This work was supported by the National Natural Science Foundation of China (No.50573071, No.50533040, No.50703038, No.50773075, and No.50640420265), the National Basic Research Program of China (No.2006cb302900), and the Chinese Academy of Sciences (No.kjcx2.yw.H02).
文摘Three series of amorphous copolymers containing azobenzene groups with various substituents and certain amounts of crosslinkable acrylic groups were prepared. The cross-linked polymer films were obtained by thermal polymerization of the acrylic groups in the copolymers, during which, by controlling the time of cross-linking reaction, the films can be made with different cross-linking degree (from 0 to 32%, which was monitored by FT-IR spectra measurement). Photo-induced alignment process of the films was performed under irradiation with linearly polarized light at 442 nm, and the effect of cross-linking degree on the photo-induced alignment rate was investigated. The dynamics of the photo-induced alignment was analyzed with biexponential curve fitting. The photo-induced alignment rate and the maximum transmittance of the films decreased because of the cross-linking. Furthermore, for the cross-linked samples, it was found that their saturated value of transmittances keep constant after repeated "writing" and "erasing" cycles. The findings reveal that the cross-linking of the film can effectively restrain the phototactic mass transport of azopolymer during irradiation by polarized light. The relationship between the cross-linking degree and the photo-induced alignment behavior of azopolymer is discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21003033 and 21203047)the Guangxi Provincial Natural Science Foundation,China(Grant Nos.2012GXNSFBA053012 and 2014GXNSFAA118019)the Research Foundation of Education Bureau of Guangxi Zhuang Autonomous Region,China(Grant No.ZD2014127)
文摘Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.
基金The work was supported by the National Natural Science Foundation of China
文摘The emeraldine base form of polyaniline (PANI) can be doped by a photo-induced doping method. In this method a. copolymer of vinylidene chloride and methyl acrylate (VCMAC) was used as photo acid generator which can release proton when it is exposed to ultraviolet light (lambda = 254 nm). The structure of PANI-VCMAC system before and after irradiation was characterized by elemental analysis, IR, XTP, anti SEM images. Results obtained indicate that the photo-induced doping characteristics, such as doping position and type of charge carriers, are similar to that of PANI doped with HCl. The poor room-temperature conductivity (similar to 10-S-5/cm) of PANI-VCMAC system after irradiation may be due to low doping degree (similar to pH=3) and the difference in morphology as compared with PANI-HCl film.
基金supported by the Fundamental Research Funds for the Central Universities (Nos. GK200901023, GK201004001)
文摘Enhancement of the surface hydrophilicity of biodegradable poly (D,L-lactic acid) (PLA) films is studied. The PLA films were treated by nitrogen plasma (PLA-N2) and nitro- gen/hydrogen plasma (PLA-N2/H2), respectively. The surface properties and microstructure of PLA-N2 and PLA-N2/H2 were studied by static contact angle measurement, surface free energy calculation, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). It is confirmed that the surface hydrophilicity of PLA-N2 and PLA-N2/H2 was higher than that of pristine PLA, and the surface hydrophilicity of PLA-N2 films was better than that of PLA-N2/H2.
文摘Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.
文摘This study addressed the effects of treatment with gliding discharge plasma on the surface properties of solid materials, as well as the consequences concerning adherence of a model bacterium. As evaluated by contact angles with selected liquids, plasma treatment caused an increase in surface hydrophilicity and in the Lewis acid-base components of the surface energy of all materials tested. These modifications were more marked for low density polyethylene and stainless steel than for polytetrafiuoroethylene. After treatment, the hydrophilicity of the materials remained relatively stable for at least 20 days. Moreover, analysis of the topography of the materials by atomic force microscopy revealed that the roughness of both polymers was reduced by glidarc plasma treatment. As a result of all these modifications, solid substrates were activated towards micro-organisms and the adherence of S. epidermidis, a negatively charged Lewis-base and mildly hydrophilic strain selected as the model, was increased in almost all the cases tested.
基金Shanghai Science and Technical Committee,China(No.10411953300)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,China(No.LZ0902)Minhang District Industry-Study-Research Cooperation,China(No.2012MH202)
文摘Hydrogen peroxide( H_2O_2) is applied for surface modification of polyglycolic acid( PGA) fibers in order to enhance the hydrophilicity and cytocompatibility of PGA fibers effectively,and maintain the breaking strength as the same time. PGA fibers are dipped in H_2O_2 solution a certain time for modification. Scanning electron microscopy( SEM) was used to observe the surface morphology of PGA fibers before and after modification. The varying of PGA macromolecule was examined with Fourier transform infrared spectroscopy( FTIR) analyses. X-ray diffraction( XRD) and differential scanning calorimetry( DSC) analysis showed that crystallinity slightly decreases. Mechanical performance test showed tensile force of modified PGA fiber was increased. The water contact angle test indicated the improving of hydrophilic. A cell proliferation assay showed that fibroblast cells attach and proliferate well on the fibers, which meant the modified fibers possess good cytocompatibility. These results suggest that H_2O_2 surface modification is easy to operate and a advantageous modification method for PGA fibers.
文摘Plasma-assisted chemical vapor deposition (PCVD) was applied for amorphous TiOx deposition on Pyrex-glass substrate at low temperature below 90°C to control orientation of anatase-TiO2 layer by low pressure chemical vapor deposition (LPCVD) using TTIP-single precursor. Preferentially -oriented anatase-TiO2 layer was successfully deposited with the orientation ratio as high as 68% on the initial layer of the thickness around 70 nm. Contact angle water was quickly decreased by UV-irradiation on the highly -oriented TiO2 layer comparing with the layer directly deposited on glass, whereas surface roughness on the former was significantly reduced in comparison to that on the latter. Methyleneblue (MB) aqueous solution with the concentration of 2 mmol/L was used to evaluate photocatalytic property on the layer. Rate constant of MB-decomposition via first order kinetics increased with the orientation ratio above 60% was resulted in 2.3 × 10-1?min-1 for the layer with -orientation ratio of 68%, whereas the constant was 2.8 × 10-3 min-1 for the layer directly deposited on glass.
文摘Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the E ii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.
文摘The thermodynamic properties of 135 polychlorinated phenothiazines (PCPTZs) in the standard state are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G^** level, and their octanol-water partition coefficients (logKow) are calculated based on group contributions. The chlorine substitution pattern strongly influenced the thermodynamic properties and hydrophilicity of the compounds. The thermodynamic properties of congeners also depend on the chlorine substitution pattern. The effect of chlorine substitution pattern is quantitatively studied by considering the mmaber and position of Cl atom substitution (Npcs). The results show that the Npcs model may be used to predict the thermodynamic properties and hydrophilicity for all 135 PCPTZ congeners.
基金Supported by the Natural Science Foundation of Hubei Province(No.2013CFA008)NCET(No.11-0687)
文摘GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by UV-1601 speetrophotometer and optical second-order nonlinear tester. The results show that the transmittance of the samples around 532 nm obviously decreases and Bragg reflector forms, which is due to the production of photon-generated carriers. With the increase of laser pulse energy or the extension of irradiation duration, the Bragg reflector increases and gradually tends to be stable. These can be ascribed to the excitation- capture process of the carriers. After irradiation, the relaxation phenomenon results from the release of part of the absorbed energy in the glass matrix. And the fitting equation of the relaxation process is consistent with a conventional Kohlrausch stretched exponential function. The origin of the second harmonic generation (SHG) is because of the dipole reorientation caused by the photo-induced anisotropy in the glass.