期刊文献+
共找到175,324篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and Characterization of pH-Responsive Charge Reversal Nanocomposite for miRNA Delivery
1
作者 余丹 YE Liyuan +2 位作者 LI Binbin MOU Fangzhi 殷义霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1048-1052,共5页
pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microsc... pH-responsive charge reversal loaded miRNA nanocomposite was prepared by electrostatic self-assembly.The morphology,particle size and zeta potential of the nanocomposites were analyzed by transmission electron microscopy and dynamic light scattering.The synthesis of the polymer was analyzed by^(1)H-NMR.The zeta-potential changes and cellular uptake effects of the nanocomplexes under different pH environments were investigated.The experimental results show that the surface morphology of the nanocomposite is spherical,and the average particle size is about 135 nm.As the pH value of the solution gradually decreases,the surface charge of the nanocomposite reverses from negative charge to positive charge(from-9.4 to+17.1 mV).Cellular uptake mediated by pH-responsive nanocomposite is selective for tumor cells,and the cellular uptake effect in tumor cells at pH 6.5 was approximately 3 times higher than that at pH 7.4.This pH responsive charge reversal nanocomposite has promising application prospects for gene delivery in the weak acid environment of tumors. 展开更多
关键词 charge conversion siRNA delivery pH responsive cancer therapy
下载PDF
Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes
2
作者 Cengceng Zhao Gaohui Liu +6 位作者 Yanyan Lin Xueqin Li Na Meng Xianfeng Wang Shaoju Fu Jianyong Yu Bin Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期67-78,共12页
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ... Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices. 展开更多
关键词 BIOMIMETIC TRANSPARENT Nanofibrous membrane Temperature response Phase change materials
下载PDF
Rosmarinic acid improves tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats
3
作者 Vahideh Abbasnia Mohsen Foadoddini +2 位作者 Delaram Eslimi Esfahani Mohammad Reza Khazdair Shahrbanoo Oryan 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第3期100-105,共6页
Objective:To evaluate the effect of rosmarinic acid on tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats.Methods:Rats were randomly divided into six groups:the control gr... Objective:To evaluate the effect of rosmarinic acid on tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats.Methods:Rats were randomly divided into six groups:the control group,the asthmatic group,and the asthmatic groups treated with dexamethasone(1 mg/kg;oral gavage)or three doses of rosmarinic acid(0.5,1,and 2 mg/kg;oral gavage).For induction of asthma,rats received intraperitoneal injections and inhalation of ovalbumin.After 21 days,bronchoalveolar lavage fluid and lung samples were collected for histopathological analyses.Moreover,total and differential white blood cell counts were determined.Results:The rosmarinic acid-treated group had significantly lower tracheal smooth muscle responses to methacholine than the asthmatic group.In addition,rosmarinic acid reduced white blood cell count and the percentages of eosinophils,monocytes,and neutrophils while increasing the percentage of lymphocytes.Ovalbumin-induced lung pathological changes were significantly improved by treatment with rosmarinic acid.Conclusions:Rosmarinic acid improves tracheal smooth muscle responsiveness and lung pathological changes in ovalbumin-sensitized rats. 展开更多
关键词 Rosmarinic acid ASTHMA OVALBUMIN Tracheal responsiveness Inflammation White blood cell
下载PDF
Fluorescent Double Network Hydrogels with Ionic Responsiveness and High Mechanical Properties for Visual Detection
4
作者 郑湾 LIU Lerong +5 位作者 Lü Hanlin WANG Yuhang LI Feihu ZHANG Yixuan 陈艳军 WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期487-496,共10页
We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,wh... We developed a fluorescent double network hydrogel with ionic responsiveness and high mechanical properties for visual detection.The nanocomposite hydrogel of laponite and polyacrylamide serves as the first network,while the ionic cross-linked hydrogel of terbium ions and sodium alginate serves as the second network.The double-network structure,the introduction of nanoparticles and the reversible ionic crosslinked interactions confer high mechanical properties to the hydrogel.Terbium ions are not only used as the ionic cross-linked points,but also used as green emitters to endow hydrogels with fluorescent properties.On the basis of the “antenna effect” of terbium ions and the ion exchange interaction,the fluorescence of the hydrogels can make selective responses to various ions(such as organic acid radical ions,transition metal ions) in aqueous solutions,which enables a convenient strategy for visual detection toward ions.Consequently,the fluorescent double network hydrogel fabricated in this study is promising for use in the field of visual sensor detection. 展开更多
关键词 visual detection ionic responsiveness fluorescent hydrogels double network hydrogels mechanical property
下载PDF
Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications
5
作者 Jiafeng Zou Zeting Yuan +9 位作者 Xiaojie Chen You Chen Min Yao Yang Chen Xiang Li Yi Chen Wenxing Ding Chuanhe Xia Yuzheng Zhao Feng Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期1-17,共17页
Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focus... Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications. 展开更多
关键词 Hydrogen sulfide Disease mechanisms Removal of hydrogen sulfide responsive nanoplatforms CHALLENGES Biomedical applications
下载PDF
Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities 被引量:3
6
作者 Neng Chen Yang Zhou +10 位作者 Yinping Liu Yuanyuan Mi Sisi Zhao Wang Yang Sai Che Hongchen liu FengJiang Chen Chong Xu Guang Ma Xue Peng Yongfeng Li 《Nano Research》 SCIE EI CSCD 2022年第8期7703-7712,共10页
Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an ... Despite enormous efforts in actuators,most researches are only limited to various actuation behaviors and demonstrations of soft materials.It has not yet been reported to capture and monitor its movement status in an invisible environment.Therefore,it is of great significance to develop a self-sensing and self-actuating dual-function hydrogel actuator system to realize real-time monitoring.Here,we report a bifunctional hydrogel system with self-actuating and self-monitoring abilities,which combines the functions of photothermal actuation and electrical resistance sensing into a single material.The bilayer tough conductive hydrogel synthesized by unconventional complementary concentration recombination and cryogenic freezing technique presents a dense conductive network and high-porosity structure,achieving high toughness at 190.3 kPa of tensile strength,high stretchability(164.3%strain),and the toughness dramatically(1,471.4 kJ·m^(−3)).The working mechanism of the monitoring and self-sensing system is accomplished through the integrated monitoring device of surface temperature–bending angle–electron current,to solve the problem of not apperceiving actuator motion state when encountering obstacles in an invisible environment.We demonstrated for the first time a photothermal actuator’s motion of a football player and goalkeeper to finish the penalty and a soft actuator hand,which can achieve the action of sticking to grab and release under photo-thermal actuation.When connected to the control closed circuit,the actuator realized closed-loop monitoring and sensing feedback.The development of bifunctional hydrogel systems may bring new opportunities and ideas in the fields of material science,circuit technology,sensors,and mechanical engineering. 展开更多
关键词 photo-thermal hydrogel actuator graphene nanosheets SELF-MONITORING self-actuating surface temperature-bending angle-electron current
原文传递
Progress in the Study of Inflammatory Bowel Disease Patients with Primary Non-Responsiveness
7
作者 Yixue Liu Xiaoping Tan 《Journal of Biosciences and Medicines》 2024年第1期72-85,共14页
Inflammatory bowel disease (IBD) is a group of chronic, nonspecific intestinal inflammatory disorders characterized by localized and systemic inflammation. The use of biologic agents in the treatment of IBD patients i... Inflammatory bowel disease (IBD) is a group of chronic, nonspecific intestinal inflammatory disorders characterized by localized and systemic inflammation. The use of biologic agents in the treatment of IBD patients is widespread, and the occurrence of primary non-responsiveness during treatment is also significant. This review briefly summarizes the possible reasons for primary non-responsiveness in IBD patients, as well as predictive markers and current strategies to address it, providing a theoretical reference for early identification and management of IBD patients who do not respond to treatment. 展开更多
关键词 Inflammatory Bowel Disease Primary Non-responsiveness Anti-Tumor Necrosis Factor
下载PDF
Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber 被引量:1
8
作者 Shoulin Jiang Feifan Chen +4 位作者 Yan Zhao Shoufei Gao Yingying Wang Hoi Lut Ho Wei Jin 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第5期10-16,共7页
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab... We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers. 展开更多
关键词 optical modulators photo-thermal effects hollow-core fibers
下载PDF
Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment 被引量:3
9
作者 Luolin Li Zheng Yu +7 位作者 Jianfeng Liu Manyi Yang Gongpu Shi Ziqi Feng Wei Luo Huiru Ma Jianguo Guan Fangzhi Mou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期205-223,共19页
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to colle... Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments.Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment.The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe_(3)O_(4)nanoparticles encapsulated in a responsive hydrogel shell,and show multiple integrated functions,including energetic magnetically-driven swarming motions,bright stimuli-responsive structural colors,and photothermal conversion.Thus,they can actively navigate in complex environments utilizing their controllable swarming motions,then visualize unknown targets(e.g.,tumor lesion)by collectively mapping out local abnormal physicochemical conditions(e.g.,pH,temperature,or glucose concentra-tion)via their responsive structural colors,and further guide external light irradiation to initiate localized photothermal treatment.This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflam-matory diseases. 展开更多
关键词 Micro/nanorobots Collective behaviors responsive photonic crystals On-the-fly sensing Photothermal therapy
下载PDF
Construction of Mo/Mo_(2)C@C modified ZnIn_(2)S_(4)Schottky junctions for efficient photo-thermal assisted hydrogen evolution 被引量:1
10
作者 Xiu-Qing Qiao Wenxuan Chen +4 位作者 Chen Li Zizhao Wang Dongfang Hou Bojing Sun Dong-Sheng Li 《Materials Reports(Energy)》 EI 2023年第4期71-81,共11页
Photocatalytic water splitting on noble metal-free photocatalysts for H_(2) generation is a promising but challenging approach to realize solar-to-chemical energy conversion.In this study,Mo/Mo_(2)C nanoparticles anch... Photocatalytic water splitting on noble metal-free photocatalysts for H_(2) generation is a promising but challenging approach to realize solar-to-chemical energy conversion.In this study,Mo/Mo_(2)C nanoparticles anchored carbon layer(Mo/Mo_(2)C@C)was obtained by a one-step in-situ phase transition approach and developed for the first time as a photothermal cocatalyst to enhance the activity of ZnIn_(2)S_(4)photocatalyst.Mo/Mo_(2)C@C nanosheet exhibits strong absorption in the full spectrum region and excellent photo-thermal conversion ability,which generates heat to improve the reaction temperature and accelerate the reaction kinetics.Moreover,metallic Mo/Mo_(2)C@C couples with ZnIn_(2)S_(4)to form ZnIn_(2)S_(4)-Mo/Mo_(2)C@C Schottky junction(denoted as ZMM),which prevents the electrons back transfer and restrains the charge recombination.In addition,conductive carbon with strong interfacial interaction serves as a fast charge transport bridge.Consequently,the optimized ZMM-0.2 junction exhibits an H2 evolution rate of 1031.07μmol g^(-1)h^-(1),which is 41 and 4.3 times higher than bare ZnIn_(2)S_(4)and ZnIn_(2)S_(4)-Mo2C,respectively.By designing novel photothermal cocatalysts,our work will provide a new guidance for designing efficient photocatalysts. 展开更多
关键词 Molybdenum carbide photo-thermal conversion H_(2)evolution Schottky junction
下载PDF
Maternal obesity exacerbates the responsiveness of offspring BALB/c mice to cow's milk protein-induced food allergy 被引量:1
11
作者 Jingxin Gao Tiange Li +3 位作者 Dong Liang Han Gong Liang Zhao Xueying Mao 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期920-928,共9页
Food allergy has become a significant public health problem affecting a large number of people worldwide.Maternal obesity causes inflammation and alters the immune system of offspring,which may exacerbate their food a... Food allergy has become a significant public health problem affecting a large number of people worldwide.Maternal obesity causes inflammation and alters the immune system of offspring,which may exacerbate their food allergy.The aim of this study was to determine whether offspring mice born to obese mothers would have more serve reactions to cow's milk protein-induced food allergy,and further investigate the underlying mechanisms.Female offspring BALB/c mice of mothers with normal and high-fat diets were sensitized withβ-lactoglobulin(BLG),respectively.Maternal obesity increased the serum immunoglobulin E and mouse mast cell protease levels,though did not have significant influence on anaphylactic symptom score,core temperature and diarrhea rate of offspring mice after BLG sensitization.Furthermore,maternal obesity led to a lower level of occludin mRNA expression in BLG-sensitized mice.The mice born to obese mothers exhibited increased mRNA expression levels of GATA-3,interleukin(IL)-4 and IL-10 in jejunum after BLG sensitization,indicating maternal obesity intensified Th2-type biased immune responses.In conclusion,maternal obesity exerted exacerbating effects on the responsiveness of their offspring to cow's milk protein sensitization. 展开更多
关键词 Cow's milk allergy Maternal obesity OFFSPRING Intestinal barrier Immune response
下载PDF
A novel triple responsive smart fluid for tight oil fracturing-oil expulsion integration 被引量:1
12
作者 Ming-Wei Gao Ming-Shan Zhang +5 位作者 Heng-Yi Du Ming-Wei Zhao Cai-Li Dai Qing You Shun Liu Zhe-Hui Jin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期982-992,共11页
The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,... The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days). 展开更多
关键词 Fracturing-oil expulsion integration Tight oil Triple responsive smart fluid "Pseudo-gemini"zwitterionic surfactant Fracturing fluid Spontaneous imbibition
下载PDF
Mechanisms and applications of antitumor immunotherapy of responsive drug-loaded nanoparticles in breast cancer
13
作者 LETIAN JIN HETING CHEN +5 位作者 QI RUAN RUI LIU YIFENG FAN XIUFANG XU DAJIANG WANG JIAHUI LU 《BIOCELL》 SCIE 2023年第7期1483-1498,共16页
During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearan... During the chemotherapy of tumors,the cytotoxic effect of drugs is vital to kill tumor cells,and the delivery of a chemotherapeutic agent is of great importance for optimal therapeutic effects.The high in vivo clearance rate and low delivery efficiency of conventional chemotherapeutic agents affect the therapeutic effect.In recent years,the responsive drug delivery nanosystem has received increasing concern owing to its excellent biocompatibility,stable delivery performance,and controlled drug release strategies.To lucidly explain the cytocidal and immunotherapeutic effects of such responsive nanosystems in breast cancer,this review discusses the various stimuli and responses of drug-loaded liposomal nanosystems.The light/magnetic response of drug-loaded bionic membranes nanosystems and the heat/magnetic response of drug-loaded iron oxide nanosystems are also elaborated.Their cancer cell-killing efficacy and antitumor immunotherapeutic effects are also scrutinized. 展开更多
关键词 responsive nanoparticles Antitumor immunotherapy Breast cancer
下载PDF
Genome-wide identification and characterization of ACBP gene family in Populus reveal salinity alkali-responsive profiles
14
作者 Yu Chang Xinru Xu +5 位作者 Hongxia Zheng Hao Xie Bo Li Sixue Chen Ying Li Shaojun Dai 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第2期481-496,共16页
Acyl-CoA-binding proteins(ACBPs)are important for the transport of acyl groups for macro molecular biosynthesis involved in plant growth,development,and diverse stress(e.g.,cold,drought,salinity,and heavy metals)respo... Acyl-CoA-binding proteins(ACBPs)are important for the transport of acyl groups for macro molecular biosynthesis involved in plant growth,development,and diverse stress(e.g.,cold,drought,salinity,and heavy metals)responses.Here,we report the phylogeny and characteristics of the ACBP family in the woody plant Populus trichocarpa.Eight genes encoding ACBP proteins were identified,and they are distributed on eight chromosomes in P.trichocarpa.These PtACBP genes were divided into four subgroups according to gene structure,conserved motifs and phylogenetic relationship.Promoter analysis revealed that cis-elements were related to stress response,phytohormone response,and physical and reproductive growth regulation.Expression levels of PtACBP genes varied among different organs,with the highest expression in leaves and the lowest in stems.Quantitative real-time PCR(qRT-PCR)analysis showed that under salinity-alkali stresses(i.e.,200 mM NaCl,75 mM Na2CO3,and 100 mM NaHCO3),four(PtACBP1,PtACBP3,PtACBP4 and PtACBP8)of eight PtACBP genes were significantly induced in roots and leaves.These data provide a comprehensive analysis of the ACBPs family in P.trichocarpa,which could be useful for gene function analyses. 展开更多
关键词 Acyl-CoA-binding proteins(ACBPs) Gene structure Expression pattern Stress response Populus trichocarpa
下载PDF
Global and Comparative Proteome Analysis of Nitrogen-Stress Responsive Proteins in the Root, Stem and Leaf of Brassica napus
15
作者 Liang Chai Cheng Cui +4 位作者 Benchuan Zheng Jinfang Zhang Jun Jiang Haojie Li Liangcai Jiang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期645-663,共19页
Nitrogen(N)is one of the basic nutrients and signals for plant development and deficiency of it would always limit the productions of crops in the field.Quantitative research on expression of N-stress responsive prote... Nitrogen(N)is one of the basic nutrients and signals for plant development and deficiency of it would always limit the productions of crops in the field.Quantitative research on expression of N-stress responsive proteins on a proteome level remains elusive.In order to gain a deep insight into the proteins responding to nitrogen stress in rapeseed(Brassica napus L.),comparative proteomic analysis was performed to investigate changes of protein expression profiles from the root,stem and leaf under different N concentrations,respectively.More than 200 differential abundance proteins(DAPs)were detected and categorized into groups according to annotations,including“binding and catalytic activity”,“involved in primary metabolism and cellular processes”,“stress-response”and so on.Variation in chlorophyll(Chl)content and antioxidant activities further revealed that oxidative stress raised with the increase of N concentration.Bioinformatics analysis based on the expression level of total proteins suggested these DAPs might play important roles in adaptation to N-stress conditions.Generally,these results provides a new aspect into N-stress responding proteins in Brassica plants. 展开更多
关键词 Brassica napus nitrogen(N)response oxidative stress PROTEOMICS
下载PDF
Identification of novel salt stress-responsive microRNAs through sequencing and bioinformatic analysis in a unique halophilic Dunaliella salina strain
16
作者 Fan GAO Fangru NAN +4 位作者 Jia FENG Junping LÜ Qi LIU Xudong LIU Shulian XIE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1558-1574,共17页
Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from fo... Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from four D.salina strains via cell biological,physiological,and biochemical methods.High-throughput sequencing of small RNAs(sRNAs)of DS-CN1 in culture medium containing 3.42-mol/L NaCl(SS group)or 0.05-mol/L NaCl(CO group)was performed on the BGISEQ-500 platform.The annotation and sequences of D.salina sRNAs were profiled.Altogether,44 novel salt stress-responsive microRNAs(miRNAs)with a relatively high C content,with the majority of them being 24 nt in length,were identified and characterized in DS-CN1.Twenty-one differentially expressed miRNAs(DEMs)in SS and CO were screened via bioinformatic analysis.A total of 319 putative salt stress-related genes targeted(104 overlapping genes)by novel miRNAs in this alga were screened based on our previous transcriptome sequencing research.Furthermore,these target genes were classified and enriched by GO and KEGG pathway analysis.Moreover,5 novel DEMs(dsa-mir3,dsa-mir16,dsa-mir17,and dsa-mir26 were significantly upregulated,and dsa-mir40 was significantly downregulated)and their corresponding 10 target genes involved in the 6 significantly enriched metabolic pathways were verified by quantitative real-time PCR.Next,their regulatory relationships were comprehensively analyzed.Lastly,a unique salt stress response metabolic network was constructed based on the novel DEM-target gene pairs.Taken together,our results suggest that 44 novel salt stress-responsive microRNAs were identified,and 4 of them might play important roles in D.salina upon salinity stress and contribute to clarify its distinctive halophilic feature.Our study will shed light on the regulatory mechanisms of salt stress responses. 展开更多
关键词 Dunaliella salina salt stress response small RNA(sRNAs)sequencing microRNA(miRNAs)
下载PDF
Comparative analysis of thermodynamic and mechanical responses between underground hydrogen storage and compressed air energy storage in lined rock caverns
17
作者 Bowen Hu Liyuan Yu +5 位作者 Xianzhen Mi Fei Xu Shuchen Li Wei Li Chao Wei Tao Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第4期531-543,共13页
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp... Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods. 展开更多
关键词 Underground hydrogen storage Compressed air energy storage Mechanical response Thermodynamic response Lined rock caverns
下载PDF
LncRNA pol-lnc78 as a ceRNA regulates antibacterial responses via suppression of pol-miR-n199-3p-mediated SARM down-regulation in Paralichthys olivaceus
18
作者 Xian-Hui Ning Bing Han +1 位作者 Ye Peng Shao-Wu Yin 《Zoological Research》 SCIE CSCD 2024年第1期25-35,共11页
Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance i... Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates. 展开更多
关键词 LncRNA SARM miRNA ceRNA Antibacterial response
下载PDF
Dynamic response of a thermal transistor to time-varying signals
19
作者 阮琴丽 刘文君 王雷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期13-19,共7页
Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through... Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt. 展开更多
关键词 PHONON phononics thermal transistor dynamic response heat conduction
下载PDF
The physiological role of the unfolded protein response in the nervous system
20
作者 Shuangchan Wu Wensheng Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2411-2420,共10页
The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfo... The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness. 展开更多
关键词 MYELIN NEURON OLIGODENDROCYTE Schwann cell unfolded protein response
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部