Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high...Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.展开更多
A microfiber with large evanescent field encapsulated in PDMS is proposed and demonstrated for ultrasound sensing.The compact size and large evanescent field of microfiber provide an excellent platform for the interac...A microfiber with large evanescent field encapsulated in PDMS is proposed and demonstrated for ultrasound sensing.The compact size and large evanescent field of microfiber provide an excellent platform for the interaction between optical signal and ultrasound wave,exhibiting a high sensitivity of 3.5 mV/kPa,which is approximately 10 times higher than the single-mode fiber sensor.Meanwhile,a phase feedback stabilization module is introduced into the coherent demodulation system for long-term stable measurement.In addition,a photoacoustic tomography experiment with the microfiber ultrasound sensor is implemented to verify the excellent performance on imaging,with the depth of 12 mm,the highest lateral resolution of 65μm and axial resolution of 250μm,respectively.The highly sensitive microfiber ultrasound sensor provides a competitive alternative for various applications,such as industrial non-destructive testing,biomedical ultrasound and photoacoustic imaging.展开更多
As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer ...As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer arrays used in a PAT system conguration,the linear array is the most commonly utilized due to its convenience and low-cost.Although linear array-based PAT has been quickly developed within the recent decade,there are still two major challenges that impair the overall performance of the PAT imaging system.Therst challenge is that the three-dimensional(3D)imaging capability of a linear array is limited due to its poor elevational resolution.The other challenge is that the geometrical shape of the linear array constrains light illumination.To date,substantial e®orts have been made to address the aforementioned challenges.This review will present current technologies for improving the elevation resolution and light delivery of linear array-based PAT systems.展开更多
We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory,...We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.展开更多
We present a systematical study on comparison between water and dry coupling in photoacoustic tomography of the humanfinger joints.Compared to the direct water immersion of thefinger for water coupling,the dry couplin...We present a systematical study on comparison between water and dry coupling in photoacoustic tomography of the humanfinger joints.Compared to the direct water immersion of thefinger for water coupling,the dry coupling is realized through a transparent PDMSfilm-based water bag,which ensures water-free contact with the skin.The results obtained suggest that the dry cou-pling provides image quality comparable to that by water coupling while eliminating the wrin-kling of thefinger joint caused by the water immersion.In addition,the dry coupling offers more stable hemodynamic images than the water coupling as the water immersion of thefinger joint causes reduction in blood vessel size.展开更多
The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography...The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography to enhance the photoacoustic tomography in this situation. The speed-of-sound information is recovered by ultrasound computed to- mography. Then, an improved delay-and-sum method is used to reconstruct the image from the photoacoustic signals. The simulation results validate that the proposed method can obtain a better photoacoustic tomography than the conventional method when the speed-of-sound variance is increased. In addition, the influences of the speed-of-sound variance and the fan-angle on the image quality are quantitatively explored to optimize the image scheme. The proposed method has a good performance even when the speed-of-sound variance reaches 14.2%. Furthermore, an optimized fan angle is revealed, which can keep the good image quality with a low cost of hardware. This study has a potential value in extending the biomedical application of photoacoustic tomography.展开更多
In this paper, we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatter...In this paper, we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal. Size and spatial arrangement determine the performance of the virtual transducer. In this study, the scatterers utilized as virtual transducers are arranged in different manners, such as on a straight line or on an arc line. We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle, which is similar to the true transducers. We also change the size of virtual transducer and study its influence on image quality. It is found that the bigger scatterers provide better images than the smaller ones. Especially, when the size of scatterers is reduced to the wavelength of photoacoustic wave, the image quality observably decreases, owing to the strong diffraction effect. Thus, it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength. The simulations are conducted, and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.展开更多
Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signa...Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signals with multiple frequencies are produced simultaneously;however,due to the limited bandwidth of a single-frequency transducer,the received PA signals with specific frequencies may be missing,leading to a low imaging quality.Methods:In contrast to our previous work,the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer,which can provide a comprehensive range for the detection of PA signals.In this study,a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system.Results:The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast.Conclusion:The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.展开更多
The synthetic apert ure based linear array photoacoustic tomography(PAT)was proposed to address the limited-view shortcomings of the single aperture,but the detection field of view(FOV)determined by the apert ure orie...The synthetic apert ure based linear array photoacoustic tomography(PAT)was proposed to address the limited-view shortcomings of the single aperture,but the detection field of view(FOV)determined by the apert ure orientation efect was not fully considered yet,leading to the limited-view observation and image resolution degradation.Herein,the aperture orientation effect was proposed from the theoretical model and then it was verified via both the numerical simulation and phantom experiment.Different orientations were enumerated sequentially in the simulation to approximate the ideal fullview case for the optimal detection FOV,considering the detect.ion pattern of the linear array transducer.As a result,the corresponding optimal aperture orientation was 60°if the synthetic aperture was seamlessly established by three single linear arrays,where the overlapped detection pattern was optimized from the individual linear-array transducer at the adjacent positions.Therefore,the limited view artifacts were minimized and the image resolution was enhanced in this aperture orientation.This study showed that the aperture orientation had great influence on the optimal detection FOV in the synthetic aperture configuration,where the full-view imaging quality and enhanced image resolution could be achieved.展开更多
In this study,a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution.The flexible fiber laser was bent into an arc shape to conform to the ultrasou...In this study,a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution.The flexible fiber laser was bent into an arc shape to conform to the ultrasound wavefront,which formed an ultrasound focus at the center of the arc.The synthetic aperture focusing technique was utilized to reconstruct the images;as a result,the elevational resolution particularly within the out-of-focus region was considerably improved compared to the resolution of an image retrieved by multiplexing the PA time-resolved signals with sound velocity.The all-optical fiber-laser photoacoustic tomography system with a high spatial resolution has potential for various applications,including biomedical research and preclinical/clinical diagnosis.展开更多
Photoacoustic imaging(PAI)has been developed,and photoacoustic computed tomography(PACT)is widely used for in vivo tissue and mouse imaging.Simulated annealing(SA)algorithm solves optimization problems,and compressed ...Photoacoustic imaging(PAI)has been developed,and photoacoustic computed tomography(PACT)is widely used for in vivo tissue and mouse imaging.Simulated annealing(SA)algorithm solves optimization problems,and compressed sensing(CS)recovers sparse signals from undersampled measurements.We aim to develop an advanced sparse imaging framework for PACT,which invloves the use of SA to¯nd an optimal sparse array element distribution and CS to perform sparse imaging.PACT reconstructions were performed using a dummy and porcine liver phantoms.Compared to traditional sparse reconstruction algorithms,the proposed method recovers signals using few ultrasonic transducer elements,enabling high-speed,low-cost PACT for practical application.展开更多
Traditional diagnostic techniques including visual examination,ultrasound(US),and magnetic resonance imaging(MRI)have limitations of in-depth information for the detection of nail disorders,resolution,and practicality...Traditional diagnostic techniques including visual examination,ultrasound(US),and magnetic resonance imaging(MRI)have limitations of in-depth information for the detection of nail disorders,resolution,and practicality.This pilot study,for thefirst time,evaluates a dualmodality imaging system that combines photoacoustic tomography(PAT)with the US for the multiparametric quantitative assessment of human nail.The study involved a small cohort offive healthy volunteers who underwent PAT/US imaging for acquiring the nail unit data.The PAT/US dual-modality imaging successfully revealed thefine anatomical structures and microvascular distribution within the nail and nail bed.Moreover,this system utilized multispectral PAT to analyze functional tissue parameters,including oxygenated hemoglobin,deoxyhemoglobin,oxygen saturation,and collagen under tourniquet and cold stimulus tests to evaluate changes in the microcirculation of the nail bed.The quantitative analysis of multispectral PAT reconstructed images demonstrated heightened sensitivity in detecting alterations in blood oxygenation levels and collagen content within the nail bed,under simulated different physiological conditions.This pilot study highlights the potential of PAT/US dual-modality imaging as a real-time,noninvasive diagnostic modality for evaluating human nail health and for early detection of nail bed pathologies.展开更多
Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-bas...Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-based PAT suffers from the limited-view challenge, and thus the synthetic aperture configuration is designed that still requires multichannel data acquisition hardware. Herein, a feasible synthetic aperture PAT based on compressed sensing reconstruction is proposed. Both the simulation and experimental results tested the theoretical model and validated that this approach can improve the image resolution and address the limited-view problem while preserving the target information with a fewer number of measurements.展开更多
Photothermo-chemotherapy, as a new strategy for cancer treatment, incorporates the complementary advantages of photothermal therapy and chemotherapy. In this study, a pH-sensitive diblock copolymer poly(aspartic acid...Photothermo-chemotherapy, as a new strategy for cancer treatment, incorporates the complementary advantages of photothermal therapy and chemotherapy. In this study, a pH-sensitive diblock copolymer poly(aspartic acid-butanediamine)-poly(2- (diisopropylamino)ethyl methacrylate) (PAsp(DAB)-PDPA) was synthesized and self-assembled into doxorubicin-loaded micelle, which was further used as a template to form a gold nanoshell. After fitrther modification with poly(ethylene glycol), the resulting nanoplatform provided good biocompatibility and desirable photo-thermal conversion efficiency to facilitate photothermal therapy. Meanwhile the nanoparticle also exhibited pH sensitivity, which prevented drug loss while circulating in the blood but enabled rapid drug release after endocytosis. An improved effect was achieved with the combination of photothermal therapy and chemotherapy. In addition, systemic delivery of the nanoplatform could be monitored by photoacoustic tomography. Thereby, this multifunctional nanoplatform would be highly potential for the diagnosis and therapy of cancer.展开更多
In this paper, we investigate the adjoint equation in photoacoustic tomography with variable sound speed, and propose three variational iterative algorithms. The basic idea of these algorithms is to compute the origin...In this paper, we investigate the adjoint equation in photoacoustic tomography with variable sound speed, and propose three variational iterative algorithms. The basic idea of these algorithms is to compute the original equation and the adjoint equation iteratively. We present numerical examples and show the well performance of these variational iterative algorithms.展开更多
Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry no...Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry noisy and limited-view artifacts.Model-based algorithms have been demonstrated to overcome the drawbacks of BPs.However,model-based algorithms are relatively more complex to develop and computationally demanding.Furthermore,while a plethora of novel algorithms has been developed over the past decade,most of these algorithms are either not accessible,readily available,or hard to implement for researchers who are not well versed in programming.We developed a user-friendly MATLAB-based graphical user interface(GUI;RACT2D)that facilitates back-projection and model-based image reconstructions for twodimensional RACT problems.We included numerical and experimental X-ray-induced acoustic datasets to demonstrate the capabilities of the GUI.The developed algorithms support parallel computing for evaluating reconstructions using the cores of the computer,thus further accelerating the reconstruction speed.We also share the MATLAB-based codes for evaluating RACT reconstructions,which users with MATLAB programming expertise can further modify to suit their needs.The shared GUI and codes can be of interest to researchers across the globe and assist them in e±cient evaluation of improved RACT reconstructions.展开更多
Based on the energy conversion of light into sound,photoacoustic computed tomography(PACT)is an emerging biomedical imaging modality and has unique applications in a range of biomedical fields.In PACT,image formation ...Based on the energy conversion of light into sound,photoacoustic computed tomography(PACT)is an emerging biomedical imaging modality and has unique applications in a range of biomedical fields.In PACT,image formation relies on a process called acoustic inversion from received photoacoustic signals.While most PACT systems perform this inversion with a basic assumption that biological tissues are acoustically homogeneous,the community gradually rea-lizes that the intrinsic acoustic heterogeneity of tissues could pose distortions and artifacts to finally formed images.This paper surveys the most recent research progress on acoustic het-erogeneity correction in PACT.Four major strategies are reviewed in detail,including half-time or partial-time reconstruction,autofocus reconstruction by optimizing sound speed maps,joint reconstruction of optical absorption and sound speed maps,and ultrasound computed tomog-raphy(USCT)enhanced reconstruction.The correction of acoustic heterogeneity helps improve the imaging performance of PACT.展开更多
In this study,we developed a novel photoacoustic imaging technique based on poly(ethyleneglycol)-coated(PEGylated)gold nanorods(PEG-GNRs)(as the contrast agent)combined with traditional Chinese medicine(TCM)acupunctur...In this study,we developed a novel photoacoustic imaging technique based on poly(ethyleneglycol)-coated(PEGylated)gold nanorods(PEG-GNRs)(as the contrast agent)combined with traditional Chinese medicine(TCM)acupuncture(as the auxiliary method)for quantitatively monitoring contrast enhancement in the vasculature of a mouse brain in vivo.This study takes advantage of the strong near-infrared absorption(peak at700 nm)of GNRs and the ability to adjust the hemodynamics of acupuncture.Experimental results show that photoacoustic tomography(PAT)successfully reveals the optical absorption variation of the vasculature of the mouse brain in response to intravenous administration of GNRs and acupuncture at the Zusanli acupoint(ST36)both individually and combined.The quantitative measurement of contrast enhancement indicates that the composite contrast agents(integration of acupuncture and GNRs)would greatly enhance the photoacoustic imaging contrast.The quantitative results also have the potential to estimate the local concentration of GNRs and even the real-time effects of acupuncture.展开更多
Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excita...Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission.In order to generate photoacoustic signal e±-ciently,bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization.As an alternative,the miniaturized semiconductor laser system has the advantages of being inexpensive,compact,and robust,which makes a signi¯cant e®ect on production-forming design.It is also desirable to obtain a wavelength in a wide range from visible to nearinfrared spectrum for multispectral applications.Focussing on practical aspect,this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.展开更多
Photoacoustic imaging,which can provide the maximum intensity contrast in tissue depth imaging without ionizing radiation,will be a promising imaging trend for tumor detection.In this paper,a column diffusionfiber was...Photoacoustic imaging,which can provide the maximum intensity contrast in tissue depth imaging without ionizing radiation,will be a promising imaging trend for tumor detection.In this paper,a column diffusionfiber was employed to carry a pulsed laser for irradiating stomach directly through esophagus based on the characteristics of gastric tissue structure.A long focused ultrasonic transducer was placed outside the body to detect photoacoustic signals of gastric tissue.Phantom and in vitro experiments of submucosal gastric tumors were carried out to check the sensitivity of scanning photoacoustic tomography system,including the lateral and longitudinal resolution of the system,sensitivity of different absorption coefficient in imaging,capability of transversal detection,and probability of longitudinal detection.The results demonstrate that our innovative technique can improve the parameters of imaging.The lateral resolution reaches 2.09 mm.Then a depth of 5.5mm with a longitudinal accuracy of 0.36mm below gastric mucosa of early gastric cancer(EGC)has been achieved.In addition,the optimal absorption coefficient differences among absorbers of system are 3.3-3.9 times.Results indicate that our photoacoustic imaging(PAI)system,is based on a long focusing transducer,can provide a potential application for detecting submucosal EGC without obvious symptoms.展开更多
基金supported by National Key R&D Program of China[2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology[Grant No.2020B121201010-4].
文摘Photoacoustic imaging(PAI)is a noninvasive emerging imaging method based on the photoacoustic effect,which provides necessary assistance for medical diagnosis.It has the characteristics of large imaging depth and high contrast.However,limited by the equipment cost and reconstruction time requirements,the existing PAI systems distributed with annular array transducers are difficult to take into account both the image quality and the imaging speed.In this paper,a triple-path feature transform network(TFT-Net)for ring-array photoacoustic tomography is proposed to enhance the imaging quality from limited-view and sparse measurement data.Specifically,the network combines the raw photoacoustic pressure signals and conventional linear reconstruction images as input data,and takes the photoacoustic physical model as a prior information to guide the reconstruction process.In addition,to enhance the ability of extracting signal features,the residual block and squeeze and excitation block are introduced into the TFT-Net.For further efficient reconstruction,the final output of photoacoustic signals uses‘filter-then-upsample’operation with a pixel-shuffle multiplexer and a max out module.Experiment results on simulated and in-vivo data demonstrate that the constructed TFT-Net can restore the target boundary clearly,reduce background noise,and realize fast and high-quality photoacoustic image reconstruction of limited view with sparse sampling.
基金financial supports from National Natural Science Foundation of China (NSFC)(No.61922033)Foundation for Innovative Research Groups of Hubei Province of China (2018CFA004)Innovation Fund of WNLO
文摘A microfiber with large evanescent field encapsulated in PDMS is proposed and demonstrated for ultrasound sensing.The compact size and large evanescent field of microfiber provide an excellent platform for the interaction between optical signal and ultrasound wave,exhibiting a high sensitivity of 3.5 mV/kPa,which is approximately 10 times higher than the single-mode fiber sensor.Meanwhile,a phase feedback stabilization module is introduced into the coherent demodulation system for long-term stable measurement.In addition,a photoacoustic tomography experiment with the microfiber ultrasound sensor is implemented to verify the excellent performance on imaging,with the depth of 12 mm,the highest lateral resolution of 65μm and axial resolution of 250μm,respectively.The highly sensitive microfiber ultrasound sensor provides a competitive alternative for various applications,such as industrial non-destructive testing,biomedical ultrasound and photoacoustic imaging.
基金supported in part by the Career Catalyst Research Grant from the Susan G.Komen Foundation(No.CCR17481211).
文摘As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer arrays used in a PAT system conguration,the linear array is the most commonly utilized due to its convenience and low-cost.Although linear array-based PAT has been quickly developed within the recent decade,there are still two major challenges that impair the overall performance of the PAT imaging system.Therst challenge is that the three-dimensional(3D)imaging capability of a linear array is limited due to its poor elevational resolution.The other challenge is that the geometrical shape of the linear array constrains light illumination.To date,substantial e®orts have been made to address the aforementioned challenges.This review will present current technologies for improving the elevation resolution and light delivery of linear array-based PAT systems.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.10874088,10904069,and 11028408)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK201021985)
文摘We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.
基金supported by the Natural National Science Foundation of China(NSFC)(61701076)
文摘We present a systematical study on comparison between water and dry coupling in photoacoustic tomography of the humanfinger joints.Compared to the direct water immersion of thefinger for water coupling,the dry coupling is realized through a transparent PDMSfilm-based water bag,which ensures water-free contact with the skin.The results obtained suggest that the dry cou-pling provides image quality comparable to that by water coupling while eliminating the wrin-kling of thefinger joint caused by the water immersion.In addition,the dry coupling offers more stable hemodynamic images than the water coupling as the water immersion of thefinger joint causes reduction in blood vessel size.
基金supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.11422439,11274167,and 11274171)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20120091110001)
文摘The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography to enhance the photoacoustic tomography in this situation. The speed-of-sound information is recovered by ultrasound computed to- mography. Then, an improved delay-and-sum method is used to reconstruct the image from the photoacoustic signals. The simulation results validate that the proposed method can obtain a better photoacoustic tomography than the conventional method when the speed-of-sound variance is increased. In addition, the influences of the speed-of-sound variance and the fan-angle on the image quality are quantitatively explored to optimize the image scheme. The proposed method has a good performance even when the speed-of-sound variance reaches 14.2%. Furthermore, an optimized fan angle is revealed, which can keep the good image quality with a low cost of hardware. This study has a potential value in extending the biomedical application of photoacoustic tomography.
基金the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.11274167,11274171,and 11074124)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201208)
文摘In this paper, we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal. Size and spatial arrangement determine the performance of the virtual transducer. In this study, the scatterers utilized as virtual transducers are arranged in different manners, such as on a straight line or on an arc line. We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle, which is similar to the true transducers. We also change the size of virtual transducer and study its influence on image quality. It is found that the bigger scatterers provide better images than the smaller ones. Especially, when the size of scatterers is reduced to the wavelength of photoacoustic wave, the image quality observably decreases, owing to the strong diffraction effect. Thus, it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength. The simulations are conducted, and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.
基金supported by National Key R&D program of China(No.2019YFB1312400)Hong Kong Health and Medical Research Fund(HMRF)(No.06171066)CUHK-Direct(No.134997202).
文摘Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signals with multiple frequencies are produced simultaneously;however,due to the limited bandwidth of a single-frequency transducer,the received PA signals with specific frequencies may be missing,leading to a low imaging quality.Methods:In contrast to our previous work,the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer,which can provide a comprehensive range for the detection of PA signals.In this study,a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system.Results:The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast.Conclusion:The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.
基金the National Natural Science Foundation of China(Grant No.61371045)Science and Technology Development Plan Project of Shandong Province,China(Grant No.2016GGX103032)+1 种基金China Postdoctoral Science Foundation(Grant No.2015M571413)Shenzhen Science&Technology Program(No.JCYJ20160429115309834).
文摘The synthetic apert ure based linear array photoacoustic tomography(PAT)was proposed to address the limited-view shortcomings of the single aperture,but the detection field of view(FOV)determined by the apert ure orientation efect was not fully considered yet,leading to the limited-view observation and image resolution degradation.Herein,the aperture orientation effect was proposed from the theoretical model and then it was verified via both the numerical simulation and phantom experiment.Different orientations were enumerated sequentially in the simulation to approximate the ideal fullview case for the optimal detection FOV,considering the detect.ion pattern of the linear array transducer.As a result,the corresponding optimal aperture orientation was 60°if the synthetic aperture was seamlessly established by three single linear arrays,where the overlapped detection pattern was optimized from the individual linear-array transducer at the adjacent positions.Therefore,the limited view artifacts were minimized and the image resolution was enhanced in this aperture orientation.This study showed that the aperture orientation had great influence on the optimal detection FOV in the synthetic aperture configuration,where the full-view imaging quality and enhanced image resolution could be achieved.
基金This research was supported by the National Natural Science Foundation of China(NSFC)(61705082,U1701268)Natural Science Foundation of Guangdong Province(2018030310587)+1 种基金Fundamental Research Funds for the Central Universities(21617304)Guangdong Province High-Level Talents Introduction Plan(2017GC010420).
文摘In this study,a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution.The flexible fiber laser was bent into an arc shape to conform to the ultrasound wavefront,which formed an ultrasound focus at the center of the arc.The synthetic aperture focusing technique was utilized to reconstruct the images;as a result,the elevational resolution particularly within the out-of-focus region was considerably improved compared to the resolution of an image retrieved by multiplexing the PA time-resolved signals with sound velocity.The all-optical fiber-laser photoacoustic tomography system with a high spatial resolution has potential for various applications,including biomedical research and preclinical/clinical diagnosis.
基金funded by the National Key Research and Development Program of China(2019YFC0117400)Jilin Province and Chinese Academy of Sciences Science and Technology Cooperation High-tech Industrialization Special Fund Project(2020SYHZ0027).
文摘Photoacoustic imaging(PAI)has been developed,and photoacoustic computed tomography(PACT)is widely used for in vivo tissue and mouse imaging.Simulated annealing(SA)algorithm solves optimization problems,and compressed sensing(CS)recovers sparse signals from undersampled measurements.We aim to develop an advanced sparse imaging framework for PACT,which invloves the use of SA to¯nd an optimal sparse array element distribution and CS to perform sparse imaging.PACT reconstructions were performed using a dummy and porcine liver phantoms.Compared to traditional sparse reconstruction algorithms,the proposed method recovers signals using few ultrasonic transducer elements,enabling high-speed,low-cost PACT for practical application.
基金supported by the program of Chengdu Fifth people's hospital Fund,No.KYJJ 2021-29the Xinglin Scholars research program,No.YYZX2021037+1 种基金the Chengdu Medical Research Project,Nos.2022055 and 2023022,Chongqing Education Commission,Youth Fund(No.KJQN202000607)Chongqing postdoctoral research project(special funding project,No.2021XM3040).
文摘Traditional diagnostic techniques including visual examination,ultrasound(US),and magnetic resonance imaging(MRI)have limitations of in-depth information for the detection of nail disorders,resolution,and practicality.This pilot study,for thefirst time,evaluates a dualmodality imaging system that combines photoacoustic tomography(PAT)with the US for the multiparametric quantitative assessment of human nail.The study involved a small cohort offive healthy volunteers who underwent PAT/US imaging for acquiring the nail unit data.The PAT/US dual-modality imaging successfully revealed thefine anatomical structures and microvascular distribution within the nail and nail bed.Moreover,this system utilized multispectral PAT to analyze functional tissue parameters,including oxygenated hemoglobin,deoxyhemoglobin,oxygen saturation,and collagen under tourniquet and cold stimulus tests to evaluate changes in the microcirculation of the nail bed.The quantitative analysis of multispectral PAT reconstructed images demonstrated heightened sensitivity in detecting alterations in blood oxygenation levels and collagen content within the nail bed,under simulated different physiological conditions.This pilot study highlights the potential of PAT/US dual-modality imaging as a real-time,noninvasive diagnostic modality for evaluating human nail health and for early detection of nail bed pathologies.
基金partially supported by the National Natural Science Foundation of China(Nos.61371045 and 11574064)the Shenzhen Science & Technology Program,China(No.JCYJ20160429115309834)the Science and Technology Development Plan Project of Shandong Province,China(Nos.2015GGX103016 and 2016GGX103032)
文摘Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-based PAT suffers from the limited-view challenge, and thus the synthetic aperture configuration is designed that still requires multichannel data acquisition hardware. Herein, a feasible synthetic aperture PAT based on compressed sensing reconstruction is proposed. Both the simulation and experimental results tested the theoretical model and validated that this approach can improve the image resolution and address the limited-view problem while preserving the target information with a fewer number of measurements.
基金financially supported by the National Natural Science Foundation of China(No.U1401242)National Basic Research Program of China(No.2015CB755500)+1 种基金Natural Science Foundation of the Guangdong Province(No.2014A030312018)the Fundamental Research Funds for the Central Universities(Nos.17lgjc01 and 17lgpy08)
文摘Photothermo-chemotherapy, as a new strategy for cancer treatment, incorporates the complementary advantages of photothermal therapy and chemotherapy. In this study, a pH-sensitive diblock copolymer poly(aspartic acid-butanediamine)-poly(2- (diisopropylamino)ethyl methacrylate) (PAsp(DAB)-PDPA) was synthesized and self-assembled into doxorubicin-loaded micelle, which was further used as a template to form a gold nanoshell. After fitrther modification with poly(ethylene glycol), the resulting nanoplatform provided good biocompatibility and desirable photo-thermal conversion efficiency to facilitate photothermal therapy. Meanwhile the nanoparticle also exhibited pH sensitivity, which prevented drug loss while circulating in the blood but enabled rapid drug release after endocytosis. An improved effect was achieved with the combination of photothermal therapy and chemotherapy. In addition, systemic delivery of the nanoplatform could be monitored by photoacoustic tomography. Thereby, this multifunctional nanoplatform would be highly potential for the diagnosis and therapy of cancer.
文摘In this paper, we investigate the adjoint equation in photoacoustic tomography with variable sound speed, and propose three variational iterative algorithms. The basic idea of these algorithms is to compute the original equation and the adjoint equation iteratively. We present numerical examples and show the well performance of these variational iterative algorithms.
基金supported by the National Institute of Health (R37CA240806)and American Cancer Society (133697-RSG-19-110-01-CCE)support from UCI Chao Family Comprehensive Cancer Center (P30CA062203).
文摘Radiation-induced acoustic computed tomography(RACT)is an evolving biomedical imaging modality that aims to reconstruct the radiation energy deposition in tissues.Traditional backprojection(BP)reconstructions carry noisy and limited-view artifacts.Model-based algorithms have been demonstrated to overcome the drawbacks of BPs.However,model-based algorithms are relatively more complex to develop and computationally demanding.Furthermore,while a plethora of novel algorithms has been developed over the past decade,most of these algorithms are either not accessible,readily available,or hard to implement for researchers who are not well versed in programming.We developed a user-friendly MATLAB-based graphical user interface(GUI;RACT2D)that facilitates back-projection and model-based image reconstructions for twodimensional RACT problems.We included numerical and experimental X-ray-induced acoustic datasets to demonstrate the capabilities of the GUI.The developed algorithms support parallel computing for evaluating reconstructions using the cores of the computer,thus further accelerating the reconstruction speed.We also share the MATLAB-based codes for evaluating RACT reconstructions,which users with MATLAB programming expertise can further modify to suit their needs.The shared GUI and codes can be of interest to researchers across the globe and assist them in e±cient evaluation of improved RACT reconstructions.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant No.61705216in part by the Major Science and Technology Project of Anhui Province under Grant No.18030801138+4 种基金in part by the Zhe-jiang Lab under Grant No.2019MC0AB01in part by the Research Funds of the Double First-Class Initiativein part by the Research Fund of the USTC Smart City Institutein part by the CAS Pioneer Hundred Talents Programin part by the Startup Fund of the University of Science and Technology of China(USTC)
文摘Based on the energy conversion of light into sound,photoacoustic computed tomography(PACT)is an emerging biomedical imaging modality and has unique applications in a range of biomedical fields.In PACT,image formation relies on a process called acoustic inversion from received photoacoustic signals.While most PACT systems perform this inversion with a basic assumption that biological tissues are acoustically homogeneous,the community gradually rea-lizes that the intrinsic acoustic heterogeneity of tissues could pose distortions and artifacts to finally formed images.This paper surveys the most recent research progress on acoustic het-erogeneity correction in PACT.Four major strategies are reviewed in detail,including half-time or partial-time reconstruction,autofocus reconstruction by optimizing sound speed maps,joint reconstruction of optical absorption and sound speed maps,and ultrasound computed tomog-raphy(USCT)enhanced reconstruction.The correction of acoustic heterogeneity helps improve the imaging performance of PACT.
基金The authors are grateful to Y.Tang from CHENGDU University of TCM for theory support of traditional Chinese medicine.
文摘In this study,we developed a novel photoacoustic imaging technique based on poly(ethyleneglycol)-coated(PEGylated)gold nanorods(PEG-GNRs)(as the contrast agent)combined with traditional Chinese medicine(TCM)acupuncture(as the auxiliary method)for quantitatively monitoring contrast enhancement in the vasculature of a mouse brain in vivo.This study takes advantage of the strong near-infrared absorption(peak at700 nm)of GNRs and the ability to adjust the hemodynamics of acupuncture.Experimental results show that photoacoustic tomography(PAT)successfully reveals the optical absorption variation of the vasculature of the mouse brain in response to intravenous administration of GNRs and acupuncture at the Zusanli acupoint(ST36)both individually and combined.The quantitative measurement of contrast enhancement indicates that the composite contrast agents(integration of acupuncture and GNRs)would greatly enhance the photoacoustic imaging contrast.The quantitative results also have the potential to estimate the local concentration of GNRs and even the real-time effects of acupuncture.
基金the National Natural Scienti¯c Foundation of China(11664011,11304129)the Science and Technology Program of Jiangxi,China(20151BAB217025,20132BBG70033,GJJ150790)the Intramural Top-notch Youth Talent Program of JXSTNU,China(2013QNBJRC003).
文摘Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission.In order to generate photoacoustic signal e±-ciently,bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization.As an alternative,the miniaturized semiconductor laser system has the advantages of being inexpensive,compact,and robust,which makes a signi¯cant e®ect on production-forming design.It is also desirable to obtain a wavelength in a wide range from visible to nearinfrared spectrum for multispectral applications.Focussing on practical aspect,this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.
基金This work was supported by the National Science Foundation of China(Grant Nos:61675043 and 81571726)the Natural Science Foundation of Fujian Province(Grant No:2018J01785).
文摘Photoacoustic imaging,which can provide the maximum intensity contrast in tissue depth imaging without ionizing radiation,will be a promising imaging trend for tumor detection.In this paper,a column diffusionfiber was employed to carry a pulsed laser for irradiating stomach directly through esophagus based on the characteristics of gastric tissue structure.A long focused ultrasonic transducer was placed outside the body to detect photoacoustic signals of gastric tissue.Phantom and in vitro experiments of submucosal gastric tumors were carried out to check the sensitivity of scanning photoacoustic tomography system,including the lateral and longitudinal resolution of the system,sensitivity of different absorption coefficient in imaging,capability of transversal detection,and probability of longitudinal detection.The results demonstrate that our innovative technique can improve the parameters of imaging.The lateral resolution reaches 2.09 mm.Then a depth of 5.5mm with a longitudinal accuracy of 0.36mm below gastric mucosa of early gastric cancer(EGC)has been achieved.In addition,the optimal absorption coefficient differences among absorbers of system are 3.3-3.9 times.Results indicate that our photoacoustic imaging(PAI)system,is based on a long focusing transducer,can provide a potential application for detecting submucosal EGC without obvious symptoms.