Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excita...Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission.In order to generate photoacoustic signal e±-ciently,bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization.As an alternative,the miniaturized semiconductor laser system has the advantages of being inexpensive,compact,and robust,which makes a signi¯cant e®ect on production-forming design.It is also desirable to obtain a wavelength in a wide range from visible to nearinfrared spectrum for multispectral applications.Focussing on practical aspect,this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.展开更多
Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing,medical care,and industrial applications,including laser welding,...Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing,medical care,and industrial applications,including laser welding,cleaning,and manufacturing.A fiber laser can output laser pulses with high energy,a high repetition rate,a controllable wavelength,low noise,and good beam quality,making it applicable in photoacoustic imaging.Herein,recent developments in fiber-laser-based photoacoustic microscopy(PAM)are reviewed.Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser,a stimulated Raman scattering-based laser source,or a fiber-based supercontinuum source for photoacoustic excitation.PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift.Because of their small size and high flexibility,compact head-mounted,wearable,or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.展开更多
Simultaneous photoacoustic and ultrasound(PAUS)imaging has attracted increasing attention in biomedical research to probe the optical and mechanical properties of tissue.However,the resolution for majority of the exis...Simultaneous photoacoustic and ultrasound(PAUS)imaging has attracted increasing attention in biomedical research to probe the optical and mechanical properties of tissue.However,the resolution for majority of the existing PAUS systems is on the order of 1 mm as the majority are designed for clinical use with low-frequency US detection.Here we developed a concurrent PAUS microscopy that consists of optical-resolution photoacoustic microscopy(OR-PAM)and high-frequency US pulse-echo imaging.This dual-modality system utilizes a novel coaxial dual-element ultrasonic transducer(DE-UST)and provides anatomical and functional information with complementary contrast mechanisms,achieving a spatial resolution of 7μm for PA imaging and 106μm for US imaging.We performed phantom studies to validate the system’s performance.The vasculature of a mouse’s hind paw was imaged to demonstrate the potential of this hybrid system for biomedical applications.展开更多
Photoacoustic microscopy(PAM),due to its deep penetration depth and high contrast,is playing an increasingly important role in biomedical imaging.PAM imaging systems equipped with conventional ultrasound transducers h...Photoacoustic microscopy(PAM),due to its deep penetration depth and high contrast,is playing an increasingly important role in biomedical imaging.PAM imaging systems equipped with conventional ultrasound transducers have demonstrated excellent imaging performance.However,these opaque ultrasonic transducers bring some constraints to the further development and application of PAM,such as complex optical path,bulky size,and difficult to integrate with other modalities.To overcome these problems,ultrasonic transducers with high optical transparency have appeared.At present,transparent ultrasonic transducers are divided into optical-based and acoustic-based sensors.In this paper,we mainly describe the acoustic-based piezoelectric transparent transducers in detail,of which the research advances in PAM applications are reviewed.In addition,the potential challenges and developments of transparent transducers in PAM are also demonstrated.展开更多
Photoacoustic imaging,which can provide the maximum intensity contrast in tissue depth imaging without ionizing radiation,will be a promising imaging trend for tumor detection.In this paper,a column diffusionfiber was...Photoacoustic imaging,which can provide the maximum intensity contrast in tissue depth imaging without ionizing radiation,will be a promising imaging trend for tumor detection.In this paper,a column diffusionfiber was employed to carry a pulsed laser for irradiating stomach directly through esophagus based on the characteristics of gastric tissue structure.A long focused ultrasonic transducer was placed outside the body to detect photoacoustic signals of gastric tissue.Phantom and in vitro experiments of submucosal gastric tumors were carried out to check the sensitivity of scanning photoacoustic tomography system,including the lateral and longitudinal resolution of the system,sensitivity of different absorption coefficient in imaging,capability of transversal detection,and probability of longitudinal detection.The results demonstrate that our innovative technique can improve the parameters of imaging.The lateral resolution reaches 2.09 mm.Then a depth of 5.5mm with a longitudinal accuracy of 0.36mm below gastric mucosa of early gastric cancer(EGC)has been achieved.In addition,the optimal absorption coefficient differences among absorbers of system are 3.3-3.9 times.Results indicate that our photoacoustic imaging(PAI)system,is based on a long focusing transducer,can provide a potential application for detecting submucosal EGC without obvious symptoms.展开更多
An NO2 photoacoustic sensor system with a high reflective mirror based on a low power blue diode laser is developed in this work. The excitation power is enhanced by increasing the number of reflections. Comparing wit...An NO2 photoacoustic sensor system with a high reflective mirror based on a low power blue diode laser is developed in this work. The excitation power is enhanced by increasing the number of reflections. Comparing with a traditional photoacoustic system, the pool constant is improved from 300.24(Pa·cm)/W to 1450.64(Pa·cm)/W, and the signal sensitivity of the photoacoustic sensor is increased from 0.016 μV/ppb to 0.2562 μV/ppb. The characteristics of temperature and humidity of the new photoacoustic sensor are also obtained, and the algorithm is adjusted to provide a quantitative response and drift of the resonance frequency. The results of this research provide a new method and concept for further developing the NO2 photoacoustic sensors.展开更多
In this paper, we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatter...In this paper, we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal. Size and spatial arrangement determine the performance of the virtual transducer. In this study, the scatterers utilized as virtual transducers are arranged in different manners, such as on a straight line or on an arc line. We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle, which is similar to the true transducers. We also change the size of virtual transducer and study its influence on image quality. It is found that the bigger scatterers provide better images than the smaller ones. Especially, when the size of scatterers is reduced to the wavelength of photoacoustic wave, the image quality observably decreases, owing to the strong diffraction effect. Thus, it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength. The simulations are conducted, and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.展开更多
A reflection-mode photoacoustic microscope using a hollow focused ultrasound transducer is developed for highresolution in vivo imaging.A confocal structure of the laser and the ultrasound is used to improve the syste...A reflection-mode photoacoustic microscope using a hollow focused ultrasound transducer is developed for highresolution in vivo imaging.A confocal structure of the laser and the ultrasound is used to improve the system resolution.The axial and lateral resolutions of the system are measured to be ~ 32 μm and ~ 58 μm,respectively.Ex vivo and in vivo modes are tested to validate the imaging capability of the photoacoustic microscope.The adjacent vein and artery can be seen clearly from the reconstructed photoacoustic images.The results demonstrate that the reflectionmode photoacoustic microscope can be used for high-resolution imaging of micro-blood vessels,which would be of great benefit for monitoring the neovascularization in tumor angiogenesis.展开更多
Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signa...Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signals with multiple frequencies are produced simultaneously;however,due to the limited bandwidth of a single-frequency transducer,the received PA signals with specific frequencies may be missing,leading to a low imaging quality.Methods:In contrast to our previous work,the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer,which can provide a comprehensive range for the detection of PA signals.In this study,a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system.Results:The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast.Conclusion:The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.展开更多
In the context of this work,a prototype hybrid photoacoustic(PA)and optical system for the on-line monitoring of laser cleaning procedures is presented.The developed apparatus has enabled the detection of MHz frequenc...In the context of this work,a prototype hybrid photoacoustic(PA)and optical system for the on-line monitoring of laser cleaning procedures is presented.The developed apparatus has enabled the detection of MHz frequency range acoustic waves generated during the laser ablation process.The intrinsically generated PA signals combined with high resolution optical images provide the opportunity to follow the cleaning process accurately and in real time.Technical mock-ups have been used to demonstrate the potential of this novel technique with emphasis given to applications that refer to the restoration of Cultural Heritage(CH)surfaces.Towards this purpose,the real time monitoring of the laser assisted removal of unwanted encrustation from stonework has been achieved using IR and UV wavelengths.This novel approach has allowed for the precise determination of the critical number of laser pulses required for the elimination of the encrustation layer,while highlighting the dominant ablation mechanisms according to the irradiation wavelength.The promising results obtained using the prototype hybrid PA and optical system can open up new perspectives in the monitoring of laser cleaning interventions,promoting an improved restoration outcome.展开更多
Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).Howev...Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).However,the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously.In this paper,we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD,operating at a pulsed mode,with a repetition rate of 30 kHz,as an excitation source.A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio.By optimizing the optical system,a high lateral resolution of 4.8μm has been achieved.In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.展开更多
Photoacoustic imag ing(PAI)is a nonin vasive biomedical imag ing tech no logy capable of multiscale imag ing of biological samples from orga ns dow n to cells.Multiscale PAI requires differe nt ultraso und tra nsducer...Photoacoustic imag ing(PAI)is a nonin vasive biomedical imag ing tech no logy capable of multiscale imag ing of biological samples from orga ns dow n to cells.Multiscale PAI requires differe nt ultraso und tra nsducers that are flat or focused because the current widely-used piezoelectric transducers are rigid and lack the flexibility to tune their spatial ultrasound responses.Inspired by the rapidly-developing flexible photonics,we exploited the inherent flexibility and low-loss features of optical fibers to develop a flexible fiber-laser ultrasound sensor(FUS)for multiscale PAI.By simply bending the fiber laser from straight to curved geometry,the spatial ultraso und resp onse of the FUS can be tuned for both wide-view optical-resolution photoacoustic microscopy at optical diffraction-limited depth(~1 mm)and photoacoustic computed tomography at optical dissipation-limited depth of several centimeters.A radio-frequency demodulation was employed to get the readout of the beat frequency variation of two orthogonal polarization modes in the FUS output,which ensures low-noise and stable ultrasound detection.Compared to traditional piezoelectrical transducers with fixed ultrasound responses once manufactured,the flexible FUS provides the freedom to design multiscale PAI modalities including wearable microscope,intravascular endoscopy,and portable tomography system,which is attractive to fundamental biologic-al/medical studies and clinical applications.展开更多
In this study,a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution.The flexible fiber laser was bent into an arc shape to conform to the ultrasou...In this study,a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution.The flexible fiber laser was bent into an arc shape to conform to the ultrasound wavefront,which formed an ultrasound focus at the center of the arc.The synthetic aperture focusing technique was utilized to reconstruct the images;as a result,the elevational resolution particularly within the out-of-focus region was considerably improved compared to the resolution of an image retrieved by multiplexing the PA time-resolved signals with sound velocity.The all-optical fiber-laser photoacoustic tomography system with a high spatial resolution has potential for various applications,including biomedical research and preclinical/clinical diagnosis.展开更多
Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo...Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.展开更多
This paper presents photoacoustic and ultrasonic dual-mode imaging for real-time detection of submucosal gastric cancer with a combination of gastroscopy.The diagnostic capacity was directly addressed via several phan...This paper presents photoacoustic and ultrasonic dual-mode imaging for real-time detection of submucosal gastric cancer with a combination of gastroscopy.The diagnostic capacity was directly addressed via several phantoms and ex vivo experiments.Results demonstrated that superficial and submucosal gastric cancer can be diagnosed with a perceptible depth of 6.33 mm,a lateral accuracy of 2.23 mm,and a longitudinal accuracy of 0.17 mm though capturing the morphology of angiogenesis,which is a main character of the therioma-related change.The capability of gastroscopy-conjugated photoacoustic and ultrasonic dual-mode imaging system will own great potential in improving the clinical diagnostic rate of submucosal gastric cancer.展开更多
A compact and highly linear quartz-enhanced photoacoustic spectroscopy(QEPAS) sensor for the measurement of water vapor concentration in the air is demonstrated. A cost-effective quartz tuning fork(QTF) is used as...A compact and highly linear quartz-enhanced photoacoustic spectroscopy(QEPAS) sensor for the measurement of water vapor concentration in the air is demonstrated. A cost-effective quartz tuning fork(QTF) is used as the sharp transducer to convert light energy into an electrical signal based on the piezoelectric effect, thereby removing the need for a photodetector. The short optical path featured by the proposed sensing system leads to a decreased size. Furthermore, a pair of microresonators is applied in the absorbance detection module(ADM) for QTF signal enhancement. Compared with the system without microresonators, the detected QTF signal is increased to approximately 7-fold. Using this optimized QEPAS sensor with the proper modulation frequency and depth, we measure the water vapor concentration in the air at atmospheric pressure and room temperature. The experimental result shows that the sensor has a high sensitivity of 1.058parts-per-million.展开更多
As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer ...As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer arrays used in a PAT system conguration,the linear array is the most commonly utilized due to its convenience and low-cost.Although linear array-based PAT has been quickly developed within the recent decade,there are still two major challenges that impair the overall performance of the PAT imaging system.Therst challenge is that the three-dimensional(3D)imaging capability of a linear array is limited due to its poor elevational resolution.The other challenge is that the geometrical shape of the linear array constrains light illumination.To date,substantial e®orts have been made to address the aforementioned challenges.This review will present current technologies for improving the elevation resolution and light delivery of linear array-based PAT systems.展开更多
With Laser Reflective Tomography(LRT),the near fields of ultrasonic transducers were measured and analyzed.The principle of LRT measurement of ultrasonic field distribution was introduced and an experimental system ...With Laser Reflective Tomography(LRT),the near fields of ultrasonic transducers were measured and analyzed.The principle of LRT measurement of ultrasonic field distribution was introduced and an experimental system was set up.Acoustic pressure of a multiple element piston transducer was measured by using of a laser vibrometer.Its distribution in amplitude and phase was obtained.The acoustic pressure in the same region was measured with a needle hydrophone to validate the LRT method.Furthermore,through reconstruction of acoustic fields,it indicated that LRT method is suitable for predicting the distribution on transducers'surface and conditions of active elements.展开更多
Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-bas...Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-based PAT suffers from the limited-view challenge, and thus the synthetic aperture configuration is designed that still requires multichannel data acquisition hardware. Herein, a feasible synthetic aperture PAT based on compressed sensing reconstruction is proposed. Both the simulation and experimental results tested the theoretical model and validated that this approach can improve the image resolution and address the limited-view problem while preserving the target information with a fewer number of measurements.展开更多
基金the National Natural Scienti¯c Foundation of China(11664011,11304129)the Science and Technology Program of Jiangxi,China(20151BAB217025,20132BBG70033,GJJ150790)the Intramural Top-notch Youth Talent Program of JXSTNU,China(2013QNBJRC003).
文摘Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission.In order to generate photoacoustic signal e±-ciently,bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization.As an alternative,the miniaturized semiconductor laser system has the advantages of being inexpensive,compact,and robust,which makes a signi¯cant e®ect on production-forming design.It is also desirable to obtain a wavelength in a wide range from visible to nearinfrared spectrum for multispectral applications.Focussing on practical aspect,this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.
基金This work was supported by the National Natural Science Foundation of China,Nos.61775083 and 61805102.
文摘Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing,medical care,and industrial applications,including laser welding,cleaning,and manufacturing.A fiber laser can output laser pulses with high energy,a high repetition rate,a controllable wavelength,low noise,and good beam quality,making it applicable in photoacoustic imaging.Herein,recent developments in fiber-laser-based photoacoustic microscopy(PAM)are reviewed.Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser,a stimulated Raman scattering-based laser source,or a fiber-based supercontinuum source for photoacoustic excitation.PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift.Because of their small size and high flexibility,compact head-mounted,wearable,or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.
文摘Simultaneous photoacoustic and ultrasound(PAUS)imaging has attracted increasing attention in biomedical research to probe the optical and mechanical properties of tissue.However,the resolution for majority of the existing PAUS systems is on the order of 1 mm as the majority are designed for clinical use with low-frequency US detection.Here we developed a concurrent PAUS microscopy that consists of optical-resolution photoacoustic microscopy(OR-PAM)and high-frequency US pulse-echo imaging.This dual-modality system utilizes a novel coaxial dual-element ultrasonic transducer(DE-UST)and provides anatomical and functional information with complementary contrast mechanisms,achieving a spatial resolution of 7μm for PA imaging and 106μm for US imaging.We performed phantom studies to validate the system’s performance.The vasculature of a mouse’s hind paw was imaged to demonstrate the potential of this hybrid system for biomedical applications.
基金supported by Guangdong Province Introduction of Innovative R&D Team(2016ZT06G375)National Natural Science Foundation of China(11804059,62205070 and 11664011).
文摘Photoacoustic microscopy(PAM),due to its deep penetration depth and high contrast,is playing an increasingly important role in biomedical imaging.PAM imaging systems equipped with conventional ultrasound transducers have demonstrated excellent imaging performance.However,these opaque ultrasonic transducers bring some constraints to the further development and application of PAM,such as complex optical path,bulky size,and difficult to integrate with other modalities.To overcome these problems,ultrasonic transducers with high optical transparency have appeared.At present,transparent ultrasonic transducers are divided into optical-based and acoustic-based sensors.In this paper,we mainly describe the acoustic-based piezoelectric transparent transducers in detail,of which the research advances in PAM applications are reviewed.In addition,the potential challenges and developments of transparent transducers in PAM are also demonstrated.
基金This work was supported by the National Science Foundation of China(Grant Nos:61675043 and 81571726)the Natural Science Foundation of Fujian Province(Grant No:2018J01785).
文摘Photoacoustic imaging,which can provide the maximum intensity contrast in tissue depth imaging without ionizing radiation,will be a promising imaging trend for tumor detection.In this paper,a column diffusionfiber was employed to carry a pulsed laser for irradiating stomach directly through esophagus based on the characteristics of gastric tissue structure.A long focused ultrasonic transducer was placed outside the body to detect photoacoustic signals of gastric tissue.Phantom and in vitro experiments of submucosal gastric tumors were carried out to check the sensitivity of scanning photoacoustic tomography system,including the lateral and longitudinal resolution of the system,sensitivity of different absorption coefficient in imaging,capability of transversal detection,and probability of longitudinal detection.The results demonstrate that our innovative technique can improve the parameters of imaging.The lateral resolution reaches 2.09 mm.Then a depth of 5.5mm with a longitudinal accuracy of 0.36mm below gastric mucosa of early gastric cancer(EGC)has been achieved.In addition,the optimal absorption coefficient differences among absorbers of system are 3.3-3.9 times.Results indicate that our photoacoustic imaging(PAI)system,is based on a long focusing transducer,can provide a potential application for detecting submucosal EGC without obvious symptoms.
基金National Natural Science Foundation of China(Grant Nos.91644107,61575206,51904009,and 41905130)National Key Research and Development Program of China(Grant Nos.2017YFC0209401,2017YFC0209403,and 2017YFC0209902)the Outstanding Young Talents Program of Anhui University,China(Grant No.gxyq2019022).
文摘An NO2 photoacoustic sensor system with a high reflective mirror based on a low power blue diode laser is developed in this work. The excitation power is enhanced by increasing the number of reflections. Comparing with a traditional photoacoustic system, the pool constant is improved from 300.24(Pa·cm)/W to 1450.64(Pa·cm)/W, and the signal sensitivity of the photoacoustic sensor is increased from 0.016 μV/ppb to 0.2562 μV/ppb. The characteristics of temperature and humidity of the new photoacoustic sensor are also obtained, and the algorithm is adjusted to provide a quantitative response and drift of the resonance frequency. The results of this research provide a new method and concept for further developing the NO2 photoacoustic sensors.
基金the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.11274167,11274171,and 11074124)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201208)
文摘In this paper, we investigate the effects of the relative size and arrangement of a virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal. Size and spatial arrangement determine the performance of the virtual transducer. In this study, the scatterers utilized as virtual transducers are arranged in different manners, such as on a straight line or on an arc line. We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle, which is similar to the true transducers. We also change the size of virtual transducer and study its influence on image quality. It is found that the bigger scatterers provide better images than the smaller ones. Especially, when the size of scatterers is reduced to the wavelength of photoacoustic wave, the image quality observably decreases, owing to the strong diffraction effect. Thus, it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength. The simulations are conducted, and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB732602 and 2011CB910402)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT0829)+1 种基金the National Natural Science Foundation of China(Grant Nos.30870676,81127004 and 11104087)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant No.LYM10061)
文摘A reflection-mode photoacoustic microscope using a hollow focused ultrasound transducer is developed for highresolution in vivo imaging.A confocal structure of the laser and the ultrasound is used to improve the system resolution.The axial and lateral resolutions of the system are measured to be ~ 32 μm and ~ 58 μm,respectively.Ex vivo and in vivo modes are tested to validate the imaging capability of the photoacoustic microscope.The adjacent vein and artery can be seen clearly from the reconstructed photoacoustic images.The results demonstrate that the reflectionmode photoacoustic microscope can be used for high-resolution imaging of micro-blood vessels,which would be of great benefit for monitoring the neovascularization in tumor angiogenesis.
基金supported by National Key R&D program of China(No.2019YFB1312400)Hong Kong Health and Medical Research Fund(HMRF)(No.06171066)CUHK-Direct(No.134997202).
文摘Objective:This paper proposes a new photoacoustic computed tomography(PACT)imaging system employing dual ultrasonic transducers with different frequencies.When imaging complex biological tissues,photoacoustic(PA)signals with multiple frequencies are produced simultaneously;however,due to the limited bandwidth of a single-frequency transducer,the received PA signals with specific frequencies may be missing,leading to a low imaging quality.Methods:In contrast to our previous work,the proposed system has a compact volume as well as specific selection of the detection center frequency of the transducer,which can provide a comprehensive range for the detection of PA signals.In this study,a series of numerical simulation and phantom experiments were performed to validate the efficacy of the developed PACT system.Results:The images generated by our system combined the advantages of both high resolution and ideal brightness/contrast.Conclusion:The interchangeability of transducers with different frequencies provides potential for clinical deployment under the circumstance where a single frequency transducer cannot perform well.
文摘In the context of this work,a prototype hybrid photoacoustic(PA)and optical system for the on-line monitoring of laser cleaning procedures is presented.The developed apparatus has enabled the detection of MHz frequency range acoustic waves generated during the laser ablation process.The intrinsically generated PA signals combined with high resolution optical images provide the opportunity to follow the cleaning process accurately and in real time.Technical mock-ups have been used to demonstrate the potential of this novel technique with emphasis given to applications that refer to the restoration of Cultural Heritage(CH)surfaces.Towards this purpose,the real time monitoring of the laser assisted removal of unwanted encrustation from stonework has been achieved using IR and UV wavelengths.This novel approach has allowed for the precise determination of the critical number of laser pulses required for the elimination of the encrustation layer,while highlighting the dominant ablation mechanisms according to the irradiation wavelength.The promising results obtained using the prototype hybrid PA and optical system can open up new perspectives in the monitoring of laser cleaning interventions,promoting an improved restoration outcome.
基金Hong Kong Innovation and Technology Commission,No.ITS/036/19Research Grants Council of the Hong Kong Special Administrative Region,No.26203619.
文摘Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).However,the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously.In this paper,we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD,operating at a pulsed mode,with a repetition rate of 30 kHz,as an excitation source.A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio.By optimizing the optical system,a high lateral resolution of 4.8μm has been achieved.In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.
基金This work was supported by the National Natural Science Foundation of China(61775083,61705082,61805102,and 61860206002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2019BT02X105)Guangzhou Science and Technology Plan(201904020032).
文摘Photoacoustic imag ing(PAI)is a nonin vasive biomedical imag ing tech no logy capable of multiscale imag ing of biological samples from orga ns dow n to cells.Multiscale PAI requires differe nt ultraso und tra nsducers that are flat or focused because the current widely-used piezoelectric transducers are rigid and lack the flexibility to tune their spatial ultrasound responses.Inspired by the rapidly-developing flexible photonics,we exploited the inherent flexibility and low-loss features of optical fibers to develop a flexible fiber-laser ultrasound sensor(FUS)for multiscale PAI.By simply bending the fiber laser from straight to curved geometry,the spatial ultraso und resp onse of the FUS can be tuned for both wide-view optical-resolution photoacoustic microscopy at optical diffraction-limited depth(~1 mm)and photoacoustic computed tomography at optical dissipation-limited depth of several centimeters.A radio-frequency demodulation was employed to get the readout of the beat frequency variation of two orthogonal polarization modes in the FUS output,which ensures low-noise and stable ultrasound detection.Compared to traditional piezoelectrical transducers with fixed ultrasound responses once manufactured,the flexible FUS provides the freedom to design multiscale PAI modalities including wearable microscope,intravascular endoscopy,and portable tomography system,which is attractive to fundamental biologic-al/medical studies and clinical applications.
基金This research was supported by the National Natural Science Foundation of China(NSFC)(61705082,U1701268)Natural Science Foundation of Guangdong Province(2018030310587)+1 种基金Fundamental Research Funds for the Central Universities(21617304)Guangdong Province High-Level Talents Introduction Plan(2017GC010420).
文摘In this study,a virtual-point concept was introduced into fiber-laser photoacoustic tomography to improve the elevational image resolution.The flexible fiber laser was bent into an arc shape to conform to the ultrasound wavefront,which formed an ultrasound focus at the center of the arc.The synthetic aperture focusing technique was utilized to reconstruct the images;as a result,the elevational resolution particularly within the out-of-focus region was considerably improved compared to the resolution of an image retrieved by multiplexing the PA time-resolved signals with sound velocity.The all-optical fiber-laser photoacoustic tomography system with a high spatial resolution has potential for various applications,including biomedical research and preclinical/clinical diagnosis.
基金supported by the National Natural Science Foundation of China(No.32101153)the Fundamental Research Funds for the Central Universities(No.2021CX11018).
文摘Photoacoustic imaging(PAI)is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues.It is a non-invasive technology that can provide in vivo anatomical and functional information.This technology has great application potential in microscopic imaging and endoscope system.In recent years,the devel-opment of micro electro mechanical system(MEMS)technology has promoted the improvement and miniaturization of the photoacoustic imaging system,as well as its preclinical and clinical appli-cations.This paper introduces the research progress of MEMS technology in photoacoustic micro-scope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers,and points out the shortcomings of existing technology and the direction of future development.
基金National Natural Science Foundation of China(Grant Nos.61675043,81571726,and 81901787)the Natural Science Foundation of Fujian Province,China(Grant Nos.2018J01785 and 2018J01659).
文摘This paper presents photoacoustic and ultrasonic dual-mode imaging for real-time detection of submucosal gastric cancer with a combination of gastroscopy.The diagnostic capacity was directly addressed via several phantoms and ex vivo experiments.Results demonstrated that superficial and submucosal gastric cancer can be diagnosed with a perceptible depth of 6.33 mm,a lateral accuracy of 2.23 mm,and a longitudinal accuracy of 0.17 mm though capturing the morphology of angiogenesis,which is a main character of the therioma-related change.The capability of gastroscopy-conjugated photoacoustic and ultrasonic dual-mode imaging system will own great potential in improving the clinical diagnostic rate of submucosal gastric cancer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61107070,61127018,and 61377071)
文摘A compact and highly linear quartz-enhanced photoacoustic spectroscopy(QEPAS) sensor for the measurement of water vapor concentration in the air is demonstrated. A cost-effective quartz tuning fork(QTF) is used as the sharp transducer to convert light energy into an electrical signal based on the piezoelectric effect, thereby removing the need for a photodetector. The short optical path featured by the proposed sensing system leads to a decreased size. Furthermore, a pair of microresonators is applied in the absorbance detection module(ADM) for QTF signal enhancement. Compared with the system without microresonators, the detected QTF signal is increased to approximately 7-fold. Using this optimized QEPAS sensor with the proper modulation frequency and depth, we measure the water vapor concentration in the air at atmospheric pressure and room temperature. The experimental result shows that the sensor has a high sensitivity of 1.058parts-per-million.
基金supported in part by the Career Catalyst Research Grant from the Susan G.Komen Foundation(No.CCR17481211).
文摘As a hybrid imaging modality that combines optical excitation with acoustic detection,photoacoustic tomography(PAT)has become one of the fastest growing biomedical imaging modalities.Among various types of transducer arrays used in a PAT system conguration,the linear array is the most commonly utilized due to its convenience and low-cost.Although linear array-based PAT has been quickly developed within the recent decade,there are still two major challenges that impair the overall performance of the PAT imaging system.Therst challenge is that the three-dimensional(3D)imaging capability of a linear array is limited due to its poor elevational resolution.The other challenge is that the geometrical shape of the linear array constrains light illumination.To date,substantial e®orts have been made to address the aforementioned challenges.This review will present current technologies for improving the elevation resolution and light delivery of linear array-based PAT systems.
文摘With Laser Reflective Tomography(LRT),the near fields of ultrasonic transducers were measured and analyzed.The principle of LRT measurement of ultrasonic field distribution was introduced and an experimental system was set up.Acoustic pressure of a multiple element piston transducer was measured by using of a laser vibrometer.Its distribution in amplitude and phase was obtained.The acoustic pressure in the same region was measured with a needle hydrophone to validate the LRT method.Furthermore,through reconstruction of acoustic fields,it indicated that LRT method is suitable for predicting the distribution on transducers'surface and conditions of active elements.
基金partially supported by the National Natural Science Foundation of China(Nos.61371045 and 11574064)the Shenzhen Science & Technology Program,China(No.JCYJ20160429115309834)the Science and Technology Development Plan Project of Shandong Province,China(Nos.2015GGX103016 and 2016GGX103032)
文摘Photoacoustic tomography(PAT) has the unique capability of visualizing optical absorption inside several centimeters-deep biological tissue with a high spatial resolution. However, single linear-array transducer-based PAT suffers from the limited-view challenge, and thus the synthetic aperture configuration is designed that still requires multichannel data acquisition hardware. Herein, a feasible synthetic aperture PAT based on compressed sensing reconstruction is proposed. Both the simulation and experimental results tested the theoretical model and validated that this approach can improve the image resolution and address the limited-view problem while preserving the target information with a fewer number of measurements.