The aim of this study was to identify the intermediates in clofibric acid degradation under various advanced oxidation processes, namely ultraviolet (UV), UV/H2O2, vacuum ultraviolet (VUV), VUV/H2O2, and solar/TiO...The aim of this study was to identify the intermediates in clofibric acid degradation under various advanced oxidation processes, namely ultraviolet (UV), UV/H2O2, vacuum ultraviolet (VUV), VUV/H2O2, and solar/TiO2 processes, as well as to assess the toxicity of these intermediates. Eleven intermediates have been detected by gas chromatography-mass spectrometer, most of which were reported for the first time to our best knowledge. Combining the evolution of the dissolved organic carbon, CF and specific ultraviolet absorption at 254 nm, it could be deduced that cleavage of aromatic ring followed by dechlorination was the mechanism in solar/ TiO2 process, while dechlorination happened first and accumulation of aromatic intermediates occurred in the other processes. Different transformation pathways were proposed for UV-, VUV-assisted and solar/TiO2 processes, respectively. The acute toxicity was evaluated by means of Photobacterium phosphoreurn T3 spp. bioassay. It was believed that aromatic intermediates increased the toxicity and the ring-opening pathway in solar/TiO2 process could relieve the toxicity.展开更多
文摘为了有效解决明亮发光细菌T3价格暴涨且供货不稳定的问题,采用费氏弧菌为测试菌种,ZnSO4·7H2O为参比毒物,通过单因素实验探讨了不同时间内费氏弧菌的稳定性,考察了不同浓度的参比毒物对菌种发光强度和抑制率的影响,研究了费氏弧菌在油田添加剂生物毒性测试中的应用.结果表明:费式弧菌在测试过程中存活性高、稳定性好;参比毒物ZnSO4·7H2O浓度越大,发光强度越低,抑制率越高;费氏弧菌测得的降滤失剂的毒性大于包被剂,最佳测试时间为15~30 min.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 20677015 and 40871223), the National High Technology Research and Development Program of China (No. 2007AA06Z331), the Chinese Shanghai Leading Academic Discipline Project (B506) and National Post-Doctoral Science Foundation (No. 2011M500071).
文摘The aim of this study was to identify the intermediates in clofibric acid degradation under various advanced oxidation processes, namely ultraviolet (UV), UV/H2O2, vacuum ultraviolet (VUV), VUV/H2O2, and solar/TiO2 processes, as well as to assess the toxicity of these intermediates. Eleven intermediates have been detected by gas chromatography-mass spectrometer, most of which were reported for the first time to our best knowledge. Combining the evolution of the dissolved organic carbon, CF and specific ultraviolet absorption at 254 nm, it could be deduced that cleavage of aromatic ring followed by dechlorination was the mechanism in solar/ TiO2 process, while dechlorination happened first and accumulation of aromatic intermediates occurred in the other processes. Different transformation pathways were proposed for UV-, VUV-assisted and solar/TiO2 processes, respectively. The acute toxicity was evaluated by means of Photobacterium phosphoreurn T3 spp. bioassay. It was believed that aromatic intermediates increased the toxicity and the ring-opening pathway in solar/TiO2 process could relieve the toxicity.