Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A...Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33 Mn0.33Ti0.6703(A = Ca or Sr and Ln = rare earth) were found to have orthorhombic symmetry with the space group Pnrna, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Cao.67Ln0.33Mn0.33Ti0.6703 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.展开更多
Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sinter...Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the SmzO3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Srno.2oCe0.8Ol.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the An'henius equation. Then the SmzO3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.展开更多
Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activitie...Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.展开更多
TiO2/V2O5 catalyst doped with rare earth ions was prepared by sol-gel method. Titanium tetrapropoxide and vanadium pentoxide were used as precursor of the composite catalyst and rare earth ions were used as dopant. Th...TiO2/V2O5 catalyst doped with rare earth ions was prepared by sol-gel method. Titanium tetrapropoxide and vanadium pentoxide were used as precursor of the composite catalyst and rare earth ions were used as dopant. The crystal phases, crystalline sizes, microstructure, absorption spectra of doped composite catalyst were studied by XRD, EDS, FT-IR and UV-Vis. Photoactivity of the prepared catalyst under ultraviolet irradiation were evaluated by degradation of methyl orange (MO) in aqueous solution. It is shown that the prepared catalyst is composed of anatase and futile. The rare earth ions are highly dispersed in composite catalyst. All the doped catalysts appear higher photocatalytic activity than TiO2/V2O5 catalyst and catalyst doped with Ce^4+ present the best activity to MO.展开更多
CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (...CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.展开更多
It can be known from a large number of research results that improving the dispersibility of CNTs can effectively optimize the mechanical properties of the corresponding metal matrix composites.However,the crucial iss...It can be known from a large number of research results that improving the dispersibility of CNTs can effectively optimize the mechanical properties of the corresponding metal matrix composites.However,the crucial issue of increasing the bonding of CNTs and the matrix is still unsolved.In this paper,a novel method was developed to increase interfacial bonding strength by coating titanium oxide(TiO2)on the surface of CNTs.The rare earth Pr and TiO2@CNTs-reinforced AZ91matrix composites were successfully fabricated by powder metallurgy.Hot press sintering and hot extrusion of the milled powder was performed.After hot extrusion,the influence of TiO2@CNTs on the microstruc-ture and mechanical properties of the composites were investigated.The results showed that the coating process can improve the distribution of CNTs in Mg alloy.The CNTs refined the grains of the matrix,and the CNTs were presented throughout the extrusion direction.When the TiO2@CNTs content was 1.0 wt.%,the yield strength(YS),ultimate ten-sile strength(UTS),and elongation of the alloy attained maximum values.The values were improved by 23.5%,82.1%,and 40.0%,respectively,when compared with the AZ91 alloy.Good interfacial bonding was achieved,which resulted in an effective tensile loading transfer at the interface.CNTs carried the tensile stress and were observed on the tensile fracture.展开更多
Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. F...Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength , were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃ ) reaches 4100, the change in relative dielectric constant with temperature is - 10% to 10% within the range of - 15 - 100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm^-1, which can be used in manufacturing high voltage ceramic capacitors展开更多
Pyrochlore oxides of general compositions, A2Zr2O7, where A is a 3+ cation (La to Lu), are promising candidate materials for applications as high temperature thermal barrier coatings because of their high melting p...Pyrochlore oxides of general compositions, A2Zr2O7, where A is a 3+ cation (La to Lu), are promising candidate materials for applications as high temperature thermal barrier coatings because of their high melting points, high thermal expansion coefficients, and low thermal conductivities. In this study, oxides of Sm2Zr2O7, (Smo.75La0.25)2Zr2O7, (Sm0.5 La0.5)2 ZreO7, (Sm0.25La0.75)eZr2O7 and La2Zr2O7 were prepared by solid reactions at 1600℃ for 10 h using Sm2O3, La2O3 and ZrO2 as the reactants. The phase compositions of these ceramic materials were analyzed by X-ray diffractometer (XRD) and fourier transform infrared spectroscopy (FT-IR) methods, respectively. The microstructure was observed by scanning electron microscope (SEM). The thermal conductivities of these ceramic materials were measured using laser-flash method. XRD and FT-IR results showed that pure ceramic materials with pyrochlore structure were prepared successfully. SEM results indicated that microstructures of these ceramic materials were dense and grain boundaries were very clean. The La2O3 doped Sm2Zr2O7 pyrochlores (Sm0.75 La0.25)2Zr2O7 and (Sm0.5 La0.5)2 Zr2O7 had lower thermal conductivity than the undoped Sm2Zr2O7. The thermal conductivity of (Sm0.25La0.75)2Zr2O7 was found to be lower than that of La2Zr2O7. The results showed that these ceramic materials had the potential to be used as candidate materials for TBCs.展开更多
Ho-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by an acid-catalyzed sol-gel method. The photocatalytic decomposition of methyl orange in aqueous solution was used as a probe reaction to ...Ho-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by an acid-catalyzed sol-gel method. The photocatalytic decomposition of methyl orange in aqueous solution was used as a probe reaction to evaluate their photocatalytic activities. The effects of Ho doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalysts were investigated by means of techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Diffuse Reflectance UV-Vis Spectroscopy (UV-Vis DRS), Fourier Transform Infrared (FT-IR), and Photo-Luminiscence (PL) spectra. Moreover, the modification mechanism of Ho doping was also discussed. The results showed that Ho doping could inhibit phase transformation from anatase to rntile, suppress the growth of TiO2 grains, cause blue shift of the absorption spectrum edge, accelerate surface hydroxylation, and enhance the separation efficiency of photoinduced electron-hole pairs, which resulted in a significant improvement in the photoreactivity of Ho-doped TiO2. Among them, the Ho-doped TiO2 calcined at 500℃ achieved the highest photocatalytic activity.展开更多
Mesoporous TiO2-CeO2 mixed oxide(m-TiO2-CeO2) were synthesized using n-cetylpyridinium chloride (C16PyCl) as a structure-directing agent under the neutral conditions and room temperature. The synthesized mesoporous sa...Mesoporous TiO2-CeO2 mixed oxide(m-TiO2-CeO2) were synthesized using n-cetylpyridinium chloride (C16PyCl) as a structure-directing agent under the neutral conditions and room temperature. The synthesized mesoporous samples were characterized by FT-IR, XRD, and N2 adsorption BET methods. The incorporation of Ce3+ ions into the channel wall improves the stability of the mesoporous structure obviously. After ruthenium being loaded by the impregnating method, the Ru particle strongly interacts with the mesoporous mixed supports. Although a part of the particles are possible to block the support pores, the catalytic activity of ruthenium supported on the m-TiO2-CeO2 for methanol decomposition to carbon monoxide and hydrogen is significantly higher than that of ruthenium supported on m-TiO2. A synergistic effect between CeO2 and TiO2 was observed for promoting the catalytic properties of Ru.展开更多
Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05...Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05)O_(2)(M=La,Y,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Er,Lu,and,Yb)oxide surface with high thermal stability by using first-principles molecular dynamics(FPMD)simulation and experiment method.Through the structure stability analysis at different temperatures,the surface energyγas a function of R_(ion)/D_(ave)is identified as a quantitative structure descriptor for analyzing the doping effect of rare earth(RE)elements on the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).By doping the suitable RE,γcan be adjusted to the optimal range to enhance the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).With this strategy,it can be predicted that the sequence of thermal stability improvement is Y>La>Gd>Nd>Pr>Pm>Sm>Eu>Tb>Er>Yb>Lu,which was further verified by our experiment results.After thermal treatment at 1100℃for 10 h,the specific surface area(SSA)of aged Y-CZ and La-CZ samples can reach 21.34 and 19.51 m~2/g,which is 63.02%and 49.04%higher than the CZMO sample without doping because the surface doping of Y and La is in favor of inhibiting the surface atoms thermal displacement.In a word,the strategy proposed in this work can be expected to provide a viable way for designing the highly efficient CZMO materials in extensive applications and promoting the usages of the high-abundance rare-earth elements Y and La.展开更多
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzen...The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.展开更多
A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic acti...A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic activity in 0.1 M KI solution, which was close to the activity level of the P-25 particle made by Degussa Corporation. It exhibited photocatalytic activity in antifungal and antivirus tests under black light irradiation. The better photocatalytic activity under black light irradiation is considered to be related to the formation of anatase and rutile type titanium dioxides and rough surface. It also showed photocatalytic activity under visible light irradiation, which is considered to be attributable to carbon and nitrogen doping in titanium dioxide.展开更多
The effect of rare earth oxides (RE=Ce, La, Gd, and Dy) doping of alumina support in NiO/7-A1203 system was investi- gated on its catalytic performance in oxidative dehydrogenation (ODH) of cyclohexane. The physic...The effect of rare earth oxides (RE=Ce, La, Gd, and Dy) doping of alumina support in NiO/7-A1203 system was investi- gated on its catalytic performance in oxidative dehydrogenation (ODH) of cyclohexane. The physicochemical properties of various samples were followed up through N2 physisorption, temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and potentiometric acid-base titration techniques. In the parent NiO/y-A1203 catalyst, Ni species were found to be strongly interacted with alumina surface. Addition of rare earth dopants to )'-A1203 in the catalyst system affected the nickel-alumina interaction and resulted in significant modifications in the catalytic performances in the ODH reaction. The results re- vealed the beneficial role of both La203 and Gd2Os doping in enhancing the ODH catalytic activity and selectivity to cyclohexene. H2-TPR and XPS results indicated that majority of Ni species in NiO/La203 modified T-A1203 were more weakly interacted with La203 and alumina whereas both NiO like species and nickel aluminate were present on the surface. Doping with cerium or dyspro- sium increased the nickel-support interaction and led to a decrease in surface nickel concentration. In case of doping with Ce, surface concentration of cerium oxide was higher than those of the other RE oxides; the doped catalyst reached its steady state activity faster than the other catalysts. The acid-base results suggested that RE metals were interacted most likely with acidic surface hydroxyl groups. The degree of nickel-alumina interaction decreased in the following order: LaAI〉GdAI〉CeAI〉DyA1.展开更多
The significant rise of ultra-violet(UV) radiation and pathogenic infectious bacteria poses a serious threat to global health.Numerous researchers' interests are attracted by novel materials with strong UVblocking...The significant rise of ultra-violet(UV) radiation and pathogenic infectious bacteria poses a serious threat to global health.Numerous researchers' interests are attracted by novel materials with strong UVblocking ability,antibacterial activity and low toxicity to other species.In this case,a simple wet chemical method with different annealing temperatures(400,500,and 600℃) was employed to create highly effective rare earth(Sm)-doped ZnO nanorods.The(101) plane of wurtzite ZnO shifts towards a lower angle with increasing annealing temperature,according to the X-ray diffraction(XRD) study findings,which additionally establishes the consequence of lattice expansion.Occurrence of doublet peaks of Sm 3d(Sm 3d_(5/2) and Sm 3d_(3/2)) in the X-ray photoelectron spectroscopy(XPS) spectrum clearly validates the substitution of Sm^(3+) ions in the 500℃-annealed samples.The 500℃-annealed nanorods exhibit combined performances of the wide band gap,improved UV absorbance,and vivid green luminescent emission(563 nm).Additio nally,the nanorods have favorable UV-blocking execution of 96% for UVA at 360 nm,92% for UVB at 320 nm,and 57% for UVC at 225 nm,which is greater than the majority of ZnO-related materials that have been reported up to this date.Sm doping is also appropriate for improving bacterial inhibition against the two studied strains(Escherichia coli and Staphylococcus aureus),in addition to the intriguing features discussed above.Furthermore,with maximum inhibition zone diameters of 20±0.72 and 18±0.57 mm,respectively,these nanorods exhibit high inhibitory action against E.coli and S.aureus bacterial strains.The rare earth-doped material developed during the current experiment,which was annealed at 500℃,could potentially serve as an effective replacement for UV-blocking and antibacterial material,especially for biomedical applications.展开更多
A series of Y2Ti2O7 microwave dielectric ceramics were synthesized by conventional solid-state method. The effects of rare earth oxide (La2O3, CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Dy2O3) and Nd2O3 doping content on th...A series of Y2Ti2O7 microwave dielectric ceramics were synthesized by conventional solid-state method. The effects of rare earth oxide (La2O3, CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Dy2O3) and Nd2O3 doping content on the microstructure and dielectric properties of Y2Ti2O7 ceramics were investigated. The experimental results showed that the rare earth ions were considered to dissolve in Y-sites of the pyrochlore structure, different rare earth oxides and concentration had different influences on Y2Ti2O7 cerami...展开更多
基金Foundation ite ms:Project supported bythe Grant-in-Aidfor Scientific Research (C) (18560662) bythe Japan Societyfor the Promotion of Science
文摘Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33 Mn0.33Ti0.6703(A = Ca or Sr and Ln = rare earth) were found to have orthorhombic symmetry with the space group Pnrna, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Cao.67Ln0.33Mn0.33Ti0.6703 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.
文摘Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the SmzO3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Srno.2oCe0.8Ol.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the An'henius equation. Then the SmzO3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.
基金Project supported by the State Key Laboratory of Urban Water Resource and Environment (HIT 08UWQA05) and National Key Laboratory of Vacuum and Cryogenics Technology and Physics (9140C550201060C55)
文摘Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.
基金Project supported by the National Natural Science Foundation of China (50571003)
文摘TiO2/V2O5 catalyst doped with rare earth ions was prepared by sol-gel method. Titanium tetrapropoxide and vanadium pentoxide were used as precursor of the composite catalyst and rare earth ions were used as dopant. The crystal phases, crystalline sizes, microstructure, absorption spectra of doped composite catalyst were studied by XRD, EDS, FT-IR and UV-Vis. Photoactivity of the prepared catalyst under ultraviolet irradiation were evaluated by degradation of methyl orange (MO) in aqueous solution. It is shown that the prepared catalyst is composed of anatase and futile. The rare earth ions are highly dispersed in composite catalyst. All the doped catalysts appear higher photocatalytic activity than TiO2/V2O5 catalyst and catalyst doped with Ce^4+ present the best activity to MO.
基金Project supported by the National "973"Project (2004CB719503)Project supported by the National Natural ScienceFoundation of China (50502023)
文摘CeO2-ZrO2-MnOx mixed oxide series were prepared by sol-gel method. CO pulse and CO-O2 cycle measurements were carried out to examine the oxygen storage complete capacity (OSCC) and dynamic oxygen storage capacity (OSC) of the samples. The doping method brought about strong interactions between manganese oxide and ceria, both in the bulk and on the surface. Only a small part of Mn cations are incorporated into the ceria lattice to form solid solutions and the remaining are left on the surface as finely dispersed Mn3O4. The OSC behaviors of the materials are influenced by the doping amount of Mn and the solubility of Mn in the CeO2 lattice. The OSC is more easily affected by available contents of oxygen storage components when the measurement frequency is low. Comparatively, the concentration of lattice defects, which affects the mobility of bulk oxygen, is the determining factor under high frequency.
基金Supported by National Natural Science Foundation of China(Grant No.51965040)Loading Program of Science and Technology of College of Jiangxi Province(Grant No.KJLD14003).
文摘It can be known from a large number of research results that improving the dispersibility of CNTs can effectively optimize the mechanical properties of the corresponding metal matrix composites.However,the crucial issue of increasing the bonding of CNTs and the matrix is still unsolved.In this paper,a novel method was developed to increase interfacial bonding strength by coating titanium oxide(TiO2)on the surface of CNTs.The rare earth Pr and TiO2@CNTs-reinforced AZ91matrix composites were successfully fabricated by powder metallurgy.Hot press sintering and hot extrusion of the milled powder was performed.After hot extrusion,the influence of TiO2@CNTs on the microstruc-ture and mechanical properties of the composites were investigated.The results showed that the coating process can improve the distribution of CNTs in Mg alloy.The CNTs refined the grains of the matrix,and the CNTs were presented throughout the extrusion direction.When the TiO2@CNTs content was 1.0 wt.%,the yield strength(YS),ultimate ten-sile strength(UTS),and elongation of the alloy attained maximum values.The values were improved by 23.5%,82.1%,and 40.0%,respectively,when compared with the AZ91 alloy.Good interfacial bonding was achieved,which resulted in an effective tensile loading transfer at the interface.CNTs carried the tensile stress and were observed on the tensile fracture.
文摘Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength , were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃ ) reaches 4100, the change in relative dielectric constant with temperature is - 10% to 10% within the range of - 15 - 100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm^-1, which can be used in manufacturing high voltage ceramic capacitors
基金supported by Doctoral Fund of Henan Institute of Engineering (D2007012)
文摘Pyrochlore oxides of general compositions, A2Zr2O7, where A is a 3+ cation (La to Lu), are promising candidate materials for applications as high temperature thermal barrier coatings because of their high melting points, high thermal expansion coefficients, and low thermal conductivities. In this study, oxides of Sm2Zr2O7, (Smo.75La0.25)2Zr2O7, (Sm0.5 La0.5)2 ZreO7, (Sm0.25La0.75)eZr2O7 and La2Zr2O7 were prepared by solid reactions at 1600℃ for 10 h using Sm2O3, La2O3 and ZrO2 as the reactants. The phase compositions of these ceramic materials were analyzed by X-ray diffractometer (XRD) and fourier transform infrared spectroscopy (FT-IR) methods, respectively. The microstructure was observed by scanning electron microscope (SEM). The thermal conductivities of these ceramic materials were measured using laser-flash method. XRD and FT-IR results showed that pure ceramic materials with pyrochlore structure were prepared successfully. SEM results indicated that microstructures of these ceramic materials were dense and grain boundaries were very clean. The La2O3 doped Sm2Zr2O7 pyrochlores (Sm0.75 La0.25)2Zr2O7 and (Sm0.5 La0.5)2 Zr2O7 had lower thermal conductivity than the undoped Sm2Zr2O7. The thermal conductivity of (Sm0.25La0.75)2Zr2O7 was found to be lower than that of La2Zr2O7. The results showed that these ceramic materials had the potential to be used as candidate materials for TBCs.
基金Project supported by the National Natural Science Foundation of China (20677012)Foundation of Natural Science of Guangdong Province (04205301)Foundation of Science and Technology of Guangdong Province (2006A36701003)
文摘Ho-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by an acid-catalyzed sol-gel method. The photocatalytic decomposition of methyl orange in aqueous solution was used as a probe reaction to evaluate their photocatalytic activities. The effects of Ho doping on the crystallite sizes, crystal pattern, surface composition, and optical property of the catalysts were investigated by means of techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Diffuse Reflectance UV-Vis Spectroscopy (UV-Vis DRS), Fourier Transform Infrared (FT-IR), and Photo-Luminiscence (PL) spectra. Moreover, the modification mechanism of Ho doping was also discussed. The results showed that Ho doping could inhibit phase transformation from anatase to rntile, suppress the growth of TiO2 grains, cause blue shift of the absorption spectrum edge, accelerate surface hydroxylation, and enhance the separation efficiency of photoinduced electron-hole pairs, which resulted in a significant improvement in the photoreactivity of Ho-doped TiO2. Among them, the Ho-doped TiO2 calcined at 500℃ achieved the highest photocatalytic activity.
文摘Mesoporous TiO2-CeO2 mixed oxide(m-TiO2-CeO2) were synthesized using n-cetylpyridinium chloride (C16PyCl) as a structure-directing agent under the neutral conditions and room temperature. The synthesized mesoporous samples were characterized by FT-IR, XRD, and N2 adsorption BET methods. The incorporation of Ce3+ ions into the channel wall improves the stability of the mesoporous structure obviously. After ruthenium being loaded by the impregnating method, the Ru particle strongly interacts with the mesoporous mixed supports. Although a part of the particles are possible to block the support pores, the catalytic activity of ruthenium supported on the m-TiO2-CeO2 for methanol decomposition to carbon monoxide and hydrogen is significantly higher than that of ruthenium supported on m-TiO2. A synergistic effect between CeO2 and TiO2 was observed for promoting the catalytic properties of Ru.
基金Project supported by China Postdoctoral Science Foundation(2020M680616)Major State Research Development Program of Hebei province(20374202D)。
文摘Ceria-zirconia mixed oxides(CZMO)are widely used in many important catalysis fields.However,pure CZMO is known to have poor thermal stability.In this paper,a strategy was proposed to design Ce_(0.475)Zr_(0.475)M_(0.05)O_(2)(M=La,Y,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Er,Lu,and,Yb)oxide surface with high thermal stability by using first-principles molecular dynamics(FPMD)simulation and experiment method.Through the structure stability analysis at different temperatures,the surface energyγas a function of R_(ion)/D_(ave)is identified as a quantitative structure descriptor for analyzing the doping effect of rare earth(RE)elements on the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).By doping the suitable RE,γcan be adjusted to the optimal range to enhance the thermal stability of Ce_(0.475)Zr_(0.475)M_(0.05)O_(2).With this strategy,it can be predicted that the sequence of thermal stability improvement is Y>La>Gd>Nd>Pr>Pm>Sm>Eu>Tb>Er>Yb>Lu,which was further verified by our experiment results.After thermal treatment at 1100℃for 10 h,the specific surface area(SSA)of aged Y-CZ and La-CZ samples can reach 21.34 and 19.51 m~2/g,which is 63.02%and 49.04%higher than the CZMO sample without doping because the surface doping of Y and La is in favor of inhibiting the surface atoms thermal displacement.In a word,the strategy proposed in this work can be expected to provide a viable way for designing the highly efficient CZMO materials in extensive applications and promoting the usages of the high-abundance rare-earth elements Y and La.
基金supported by the National Natural Science Foundation of China (20773090)the National Natural Science Key Foundation of China (2033030)
文摘The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.
文摘A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic activity in 0.1 M KI solution, which was close to the activity level of the P-25 particle made by Degussa Corporation. It exhibited photocatalytic activity in antifungal and antivirus tests under black light irradiation. The better photocatalytic activity under black light irradiation is considered to be related to the formation of anatase and rutile type titanium dioxides and rough surface. It also showed photocatalytic activity under visible light irradiation, which is considered to be attributable to carbon and nitrogen doping in titanium dioxide.
基金the Center of Research Excellence in Petroleum Refining & Petrochemicals (project: CoRE-PRP-06) established by the Ministry of Higher Education at the King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia for finical support of this work
文摘The effect of rare earth oxides (RE=Ce, La, Gd, and Dy) doping of alumina support in NiO/7-A1203 system was investi- gated on its catalytic performance in oxidative dehydrogenation (ODH) of cyclohexane. The physicochemical properties of various samples were followed up through N2 physisorption, temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and potentiometric acid-base titration techniques. In the parent NiO/y-A1203 catalyst, Ni species were found to be strongly interacted with alumina surface. Addition of rare earth dopants to )'-A1203 in the catalyst system affected the nickel-alumina interaction and resulted in significant modifications in the catalytic performances in the ODH reaction. The results re- vealed the beneficial role of both La203 and Gd2Os doping in enhancing the ODH catalytic activity and selectivity to cyclohexene. H2-TPR and XPS results indicated that majority of Ni species in NiO/La203 modified T-A1203 were more weakly interacted with La203 and alumina whereas both NiO like species and nickel aluminate were present on the surface. Doping with cerium or dyspro- sium increased the nickel-support interaction and led to a decrease in surface nickel concentration. In case of doping with Ce, surface concentration of cerium oxide was higher than those of the other RE oxides; the doped catalyst reached its steady state activity faster than the other catalysts. The acid-base results suggested that RE metals were interacted most likely with acidic surface hydroxyl groups. The degree of nickel-alumina interaction decreased in the following order: LaAI〉GdAI〉CeAI〉DyA1.
基金supported by Researchers Supporting Project number (RSP2024R142),King Saud University,Riyadh,Saudi Arabia。
文摘The significant rise of ultra-violet(UV) radiation and pathogenic infectious bacteria poses a serious threat to global health.Numerous researchers' interests are attracted by novel materials with strong UVblocking ability,antibacterial activity and low toxicity to other species.In this case,a simple wet chemical method with different annealing temperatures(400,500,and 600℃) was employed to create highly effective rare earth(Sm)-doped ZnO nanorods.The(101) plane of wurtzite ZnO shifts towards a lower angle with increasing annealing temperature,according to the X-ray diffraction(XRD) study findings,which additionally establishes the consequence of lattice expansion.Occurrence of doublet peaks of Sm 3d(Sm 3d_(5/2) and Sm 3d_(3/2)) in the X-ray photoelectron spectroscopy(XPS) spectrum clearly validates the substitution of Sm^(3+) ions in the 500℃-annealed samples.The 500℃-annealed nanorods exhibit combined performances of the wide band gap,improved UV absorbance,and vivid green luminescent emission(563 nm).Additio nally,the nanorods have favorable UV-blocking execution of 96% for UVA at 360 nm,92% for UVB at 320 nm,and 57% for UVC at 225 nm,which is greater than the majority of ZnO-related materials that have been reported up to this date.Sm doping is also appropriate for improving bacterial inhibition against the two studied strains(Escherichia coli and Staphylococcus aureus),in addition to the intriguing features discussed above.Furthermore,with maximum inhibition zone diameters of 20±0.72 and 18±0.57 mm,respectively,these nanorods exhibit high inhibitory action against E.coli and S.aureus bacterial strains.The rare earth-doped material developed during the current experiment,which was annealed at 500℃,could potentially serve as an effective replacement for UV-blocking and antibacterial material,especially for biomedical applications.
基金Project supported by the Key University Science Research Project of Jiangsu Province (08KJA430002)
文摘A series of Y2Ti2O7 microwave dielectric ceramics were synthesized by conventional solid-state method. The effects of rare earth oxide (La2O3, CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Dy2O3) and Nd2O3 doping content on the microstructure and dielectric properties of Y2Ti2O7 ceramics were investigated. The experimental results showed that the rare earth ions were considered to dissolve in Y-sites of the pyrochlore structure, different rare earth oxides and concentration had different influences on Y2Ti2O7 cerami...