Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti...Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.展开更多
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ...It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.展开更多
Bi_2WO_6 was modified by two-dimensional g-C_3N_4(2D g-C_3N_4)via a hydrothermal method.The structure,morphology,optical and electronic properties were investigated by multiple techniques,including X-ray diffraction(X...Bi_2WO_6 was modified by two-dimensional g-C_3N_4(2D g-C_3N_4)via a hydrothermal method.The structure,morphology,optical and electronic properties were investigated by multiple techniques,including X-ray diffraction(XRD),X-ray photoelectron spectroscopy spectra(XPS),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Ultravioletvisible diffuse reflection spectroscopy(DRS),photocurrent and electrochemical impedance spectroscopy(EIS),electron spin resonance(ESR),respectively.Rhodamine B(Rh B)was used as the target organic pollutant to research the photocatalytic performance of as-prepared composites.The Bi_2WO_6/2D g-C_3N_4exhibited a remarkable improvement compared with the pure Bi_2WO_6.The enhanced photocatalytic activity was because the photogenerated electrons and holes can quickly separate by Z-Scheme passageway in composites.The photocatalytic mechanism was also researched in detail through ESR analysis.展开更多
Constructing the stable,low-cost,efficient,and highly adaptable visible light-driven photocatalyst to implement the synergistic effect of photocatalysis and adsorption has been excavated a promising strategy to deal w...Constructing the stable,low-cost,efficient,and highly adaptable visible light-driven photocatalyst to implement the synergistic effect of photocatalysis and adsorption has been excavated a promising strategy to deal with antibiotic pollution in water bodies.Herein,a novel 3 D ternary Z-scheme heterojunction photocatalyst Ni_(2)P/Bi_(2)MoO_(6)/g-C_(3)N_(4)(Ni_(2)P/BMO/CN)was fabricated by a simple solvothermal method in which the broad spectrum antibiotics(mainly tetracyclines and supplemented by quinolones)were used as target pollution sources to evaluate its adsorption and photocatalytic performance.Notably,the Zscheme composite significantly exhibit the enhancement for degradation efficiency of tetracycline and other antibiotic by using Ni_(2)P nanoparticles as electron conductor.Active species capture experiment and electron spin resonance(ESR)technology reveal the mechanism of Z-scheme Ni_(2)P/BMO/CN photocatalytic reaction in detail.In addition,based on the identification of intermediates by liquid chromatography–mass spectroscopy(LC–MS),the possible photocatalytic degradation pathways of TC were proposed.展开更多
Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that o...Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.展开更多
Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), sca...Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), brunauer-emmett-teller (BET), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectra (DRS). The results indicate that deposited titania nanoparticles on bismuth oxide surface have micro-nano structure, and this composite material exhibits porosity and increased surface hydroxyl groups. Furthermore, the as-prepared photocatalyst shows higher photocatalytic activity to the degradation of 4-chlorophenol than pure titania or P25 under sunlight.展开更多
A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst...A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.展开更多
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.展开更多
基金supported by the National Natural Science Foundation of China(21875118,22111530112)the support from the Smart Sensing Interdisciplinary Science Center,Nankai University。
文摘Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.
基金the National Natural Science Foundation of China (22209091)the Natural Science Foundation of Shandong Province (ZR2020QB057)+1 种基金the Key Program of National Natural Science Foundation of China (22133006)the Yankuang Group 2019 Science and Technology Program (YKKJ2019AJ05JG-R60)。
文摘It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.
基金supported by National Nature Science Foundation of China (21476097, 21776118)Six talent peaks project in Jiangsu Province (2014-JNHB-014)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Bi_2WO_6 was modified by two-dimensional g-C_3N_4(2D g-C_3N_4)via a hydrothermal method.The structure,morphology,optical and electronic properties were investigated by multiple techniques,including X-ray diffraction(XRD),X-ray photoelectron spectroscopy spectra(XPS),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Ultravioletvisible diffuse reflection spectroscopy(DRS),photocurrent and electrochemical impedance spectroscopy(EIS),electron spin resonance(ESR),respectively.Rhodamine B(Rh B)was used as the target organic pollutant to research the photocatalytic performance of as-prepared composites.The Bi_2WO_6/2D g-C_3N_4exhibited a remarkable improvement compared with the pure Bi_2WO_6.The enhanced photocatalytic activity was because the photogenerated electrons and holes can quickly separate by Z-Scheme passageway in composites.The photocatalytic mechanism was also researched in detail through ESR analysis.
基金financially supported by the National Natural Science Foundation of China(No.21906072,22006057,21671084 and 51902140)the Natural Science Foundation of Jiangsu Province(BK20190982)+2 种基金Henan Postdoctoral Foundation(202003013)“Doctor of Mass entrepreneurship and innovation”Project in Jiangsu Province,Jiangsu 333 talents project funding(BRA2018342)Jiangsu provincial government scholarship for overseas studies,the Doctoral Scientific Research Foundation of Jiangsu University of Science and Technology(China)(1062931806 and 1142931803)。
文摘Constructing the stable,low-cost,efficient,and highly adaptable visible light-driven photocatalyst to implement the synergistic effect of photocatalysis and adsorption has been excavated a promising strategy to deal with antibiotic pollution in water bodies.Herein,a novel 3 D ternary Z-scheme heterojunction photocatalyst Ni_(2)P/Bi_(2)MoO_(6)/g-C_(3)N_(4)(Ni_(2)P/BMO/CN)was fabricated by a simple solvothermal method in which the broad spectrum antibiotics(mainly tetracyclines and supplemented by quinolones)were used as target pollution sources to evaluate its adsorption and photocatalytic performance.Notably,the Zscheme composite significantly exhibit the enhancement for degradation efficiency of tetracycline and other antibiotic by using Ni_(2)P nanoparticles as electron conductor.Active species capture experiment and electron spin resonance(ESR)technology reveal the mechanism of Z-scheme Ni_(2)P/BMO/CN photocatalytic reaction in detail.In addition,based on the identification of intermediates by liquid chromatography–mass spectroscopy(LC–MS),the possible photocatalytic degradation pathways of TC were proposed.
基金Acknowledgements: This project is supported by the fund of the Plan of Postgraduate Scientific Research Innovation of Jiangsu Province (No. CX07B_175z) and the Natural Science Foundation of Henan Province (No. 0624720029).
文摘Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.
基金Project supported by the Scientific Research Foundation of Nanjing University of Information Science and Technology, ChinaProject (2010490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, China
文摘Bismuth oxide/titania, one interfacial composite semiconductor with high photocatalytic activity under solar light, was prepared at low temperature. The structure was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), brunauer-emmett-teller (BET), X-ray photoelectron spectroscopy (XPS) and diffuse reflection spectra (DRS). The results indicate that deposited titania nanoparticles on bismuth oxide surface have micro-nano structure, and this composite material exhibits porosity and increased surface hydroxyl groups. Furthermore, the as-prepared photocatalyst shows higher photocatalytic activity to the degradation of 4-chlorophenol than pure titania or P25 under sunlight.
基金supported by the National Natural Science Foundation of China(51268001)~~
文摘A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.
基金Project supported by the Institute of Environmental Engineering,Peking University and China Postdoctoral Science Foundation(No.2005037032)
文摘Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.